
i

Optical fluctuations on the transmission

and reflection of mesoscopic systems

Johannes F. de Boer

Ph.D. Thesis, Sept. 1995, Amsterdam.



ii

promotor: Prof. Dr. A. Lagendijk

commissie: Dr. M.P. van Albada
Prof. Dr. C.W.J. Beenakker
Prof. Dr. J.C. Dainty
Dr. L.G. Suttorp
Prof. Dr. J.T.M. Walraven

paranimfen: Elisabeth de Boer en Pier Philipsen

The work described in this thesis was part of the research program
of the ‘Stichting voor Fundamenteel Onderzoek der Materie (FOM)’,

which is financially supported by the
‘Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)’,

and carried out at the

Van der Waals-Zeeman Laboratorium
Universiteit van Amsterdam

Valckenierstraat 65-67
1018 XE Amsterdam

The Netherlands

where a number of copies of this thesis are available.



iii

Optical fluctuations on the transmission

and reflection of mesoscopic systems

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de universiteit van Amsterdam,

op gezag van de Rector Magnificus

prof. dr. P.W.M. de Meijer

ten overstaan van een door het college van dekanen

ingestelde commissie in het openbaar te verdedigen

in de Aula der Universiteit

op woensdag 20 september 1995 te 13.30 uur

door Johannes Fitzgerald de Boer

geboren te Amsterdam



iv



Dankwoord v

Dankwoord

Ik wil een aantal mensen bedanken, zonder wiens inspiratie en aanwezigheid dit
proefschrift niet tot stand zou zijn gekomen.

Allereerst wil ik mijn promotor Ad Lagendijk bedanken. Grote bewondering
heb ik voor je brede kennis van en je inspirerende enthousiasme voor de fysica.
Menigmaal heb je me op het juiste spoor gezet met een artikel of een boek over een
probleem of heb je mijn inzicht verdiept in discussies. Ik ben je ook dankbaar voor
de vrijheid die ik heb genoten gedurende het tweede deel van mijn promotie.

De tweede persoon die ik erg graag wil bedanken is Meint van Albada. Je bent
mijn leermeester geweest in de experimentele fysica. De JBF methode heeft dank
zij jou een geuzennaam verworven. Ik ben trots op de experimentele resultaten die
we samen behaald hebben.

Theo Nieuwenhuizen wil ik bedanken voor zijn college over veelvuldige ver-
strooiing, waar ik veel aan gehad heb. Verder ben ik hem en Mark van Rossum
erkentelijk voor de vruchtbare samenwerking die geleid heeft tot de twee artikelen
over de derde cumulant.

For the fruitful cooperation on the non-linear speckle work I would like to thank
Shechao Feng, en Rudolf Sprik, die daarnaast als vraagbaak een grote ondersteuning
was.

Van de werkplaats wil ik vooral Ad Wijkstra en Flip de Leeuw bedanken
voor het bouwen van mechanische respectievelijk electronische apparatuur. Voor
de ondersteuning op computergebied ben ik Paul Langemeijer, Jaap Berkhout en
Ton Jongeneelen erkentelijk en voor de kleine maar o zo belangrijke mechanische
haastklusjes Wim Koops.

Na de mensen die hebben bijgedragen aan publicaties wil ik vooral mijn col-
lega’s bedanken voor de (wetenschappelijke) discussies en de gezelligheid die het
leven voor deze promovendus dragelijk hebben gemaakt. Als eerste mijn kamerge-
noot Rik, en verder de (ex)-collega’s Peter, Marcus, Mark K., Willem, Irwan, Jom,
Tom, Boris, Rogier, Ron, Hilde, Monique, Suzan, Tycho, Merrit, Bert, Peter M.,
Maurice, Pedro, Martin, Raymond, Mick, Jaap, Pepijn, Allard, Mischa, Frank, Jook
en Gerard, buiten onze groep Barbara, Joost en Arnout, van het Amolf Diederik,
Marco en Eloy, en mijn goede vrienden in voor- en tegenspoed, Marcus, Pier en
Ronald.

Als laatste wil ik mijn moeder, mijn vader en mijn zus bedanken voor hun niet
aflatende steun en belangstelling.

Johannes de Boer
Amsterdam, augustus 1995



vi



List of publications vii

List of publications

M. P. van Albada, J. F. de Boer, and A. Lagendijk. Observation of long-range
intensity correlation in the transport of coherent ligth through a random medium.
Phys. Rev. Lett., 64, 2787, (1990).

M. P. van Albada, J. F. de Boer, A. Lagendijk, B. A. van Tiggelen, and A. Tip.
Recent results in the field of light localisation. Inst. Phys. Conf. 108, 99-110 (1991).

J. F. de Boer, M. P. van Albada, and A. Lagendijk. Intensity and field correlation’s
in multiple scattered light. Physica B, 175, 17, (1991).

J. F. de Boer, M. P. van Albada, and A. Lagendijk. Intensity and field correlation’s
in multiple scattered light. In W. van Haeringen, and D. Lenstra, editors, Analogies
in Optics and Micro-Electronics, Proceedings of the International symposium on the
Analogies in Optics and Micro-Electronics, Eindhoven, The Netherlands, 1-3 May
1991, reprinted from Physica B, 175, 17, (1991).

J. F. de Boer, M. P. van Albada, and A. Lagendijk. Transmission and intensity
correlation’s in wave propagation through random media. Phys. Rev. B, 45, 658,
(1992).

J. F. de Boer, R. Sprik, A. Lagendijk, and S. Feng. Preliminary experiments on the
transmission of light through non-linear disordered media. in: Photonic Band Gaps
and Localization, edited by C.M. Soukoulis, Plenum, New York, 165-169, (1993).

J. F. de Boer, A. Lagendijk, R. Sprik, and S. Feng. Transmission and Reflection
Correlation’s of Second Harmonic Waves in Non-linear Random Media. Phys. Rev.
Lett., 71, 3947, (1993).

J. F. de Boer, and A. Lagendijk. Mesoscopische fysica met licht (Mesoscopic physics
with light). Ned. Tijdschrift voor Natuurkunde, 60, 199-202, (1994).

J. F. de Boer, M. C. W. van Rossum, M. P. van Albada, Th. M. Nieuwenhuizen,
and A. Lagendijk. Probability distribution of multiple scattered light measured in
total transmission. Phys. Rev. Lett., 73, 2567, (1994).

M. C. W. van Rossum, J. F. de Boer, and Th. M. Nieuwenhuizen. Third cumulant
of the total transmission of diffuse waves. (1995). To be published in Phys. Rev. E.



viii



CONTENTS ix

Contents

Dankwoord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 1
1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Diffusion of light 5
2.1 Classical diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Specific intensity . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The wave equation with disorder . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Fields, intensity and units . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Free space propagator . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 The t-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Second order Born approximation to a point scatterer . . . . . 10
2.2.5 Optical theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Waves in the multiple scattering regime . . . . . . . . . . . . . . . . . 13
2.3.1 The full Green’s function . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 The mass operator . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 The full Green’s function in real space . . . . . . . . . . . . . 15
2.3.4 Coherent intensity . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Intensity in the multiple scattering regime . . . . . . . . . . . . . . . 17
2.4.1 Intensity propagator . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 The Ladder vertex . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 The time-dependent Ladder vertex . . . . . . . . . . . . . . . . . . . 20
2.5.1 Time-dependent Bethe-Salpeter equation . . . . . . . . . . . . 20
2.5.2 Wave packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.3 Time dependent Green’s function . . . . . . . . . . . . . . . . 22
2.5.4 Solving the Bethe-Salpeter equation . . . . . . . . . . . . . . . 23
2.5.5 Intensity distribution . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Diffuse intensity in a semi-infinite medium . . . . . . . . . . . . . . . 26
2.6.1 Transport theory . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.2 Boundary condition . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.3 The intensity propagator for a semi-infinite medium . . . . . . 29



x CONTENTS

2.7 Diffuse intensity in a slab . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7.1 The intensity propagator for a slab . . . . . . . . . . . . . . . 31
2.7.2 Diffuse intensity inside the slab . . . . . . . . . . . . . . . . . 33
2.7.3 Injection source . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Transmission and reflection using outgoing amplitude propagators . . 35
2.8.1 The “intensity” I(r) . . . . . . . . . . . . . . . . . . . . . . . 35
2.8.2 Ejection drain . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Correlations on the transmission 39
3.1 Laser speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Speckle distribution . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.2 Angular correlation in static laser speckle . . . . . . . . . . . . 41
3.1.3 The number of independent speckle spots . . . . . . . . . . . . 43

3.2 Waveguide with disorder . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Correlation on the transmission . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Three type of correlation on the transmission . . . . . . . . . 48
3.3.2 The short-range correlation C1 . . . . . . . . . . . . . . . . . . 50

3.4 Long-range correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.1 Short-range correlation in “volume”-speckle . . . . . . . . . . 55
3.4.2 Long-range correlation in the Langevin approach . . . . . . . 57
3.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Experiments on the transmission 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Ensemble average versus the average over the frequency range 69
4.3.2 The correlation function in the Fourier domain . . . . . . . . . 69

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.1 The short-range correlation C1 . . . . . . . . . . . . . . . . . . 70
4.4.2 The long-range correlation C2 . . . . . . . . . . . . . . . . . . 72
4.4.3 The variance of the long-range fluctuations . . . . . . . . . . . 74

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 The distribution of the total transmission 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Cumulants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.3 Experimental distribution . . . . . . . . . . . . . . . . . . . . 81
5.2.4 The second and third cumulant . . . . . . . . . . . . . . . . . 82
5.2.5 The non-linear least squares fit . . . . . . . . . . . . . . . . . 84



CONTENTS xi

5.3 The prefactor of the second versus the third cumulant . . . . . . . . . 87
5.3.1 Contributions of experimental artefacts . . . . . . . . . . . . . 88

6 Non-linear disordered media 91
6.1 Correlation in transmission and reflection . . . . . . . . . . . . . . . . 91

6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.1 Correlation in the fundamental light . . . . . . . . . . . . . . 92
6.2.2 Correlation in the second harmonic light . . . . . . . . . . . . 93

6.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A A diagrammatic approach 101
A.1 Long-range correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.1.1 The Hikami-vertex . . . . . . . . . . . . . . . . . . . . . . . . 104
A.1.2 The long-range correlation function . . . . . . . . . . . . . . . 107

A.2 Useful integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B The second and third cumulant of the total transmission 111
B.1 The conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.2 The second cumulant . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.3 The third cumulant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.4 Disconnected contribution to the cumulants . . . . . . . . . . . . . . 116

B.4.1 The disconnected contribution to the second cumulant . . . . 117
B.4.2 The disconnected contribution to the third cumulant . . . . . 118

Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Nederlandse samenvatting 129



xii CONTENTS



1

Chapter 1

Introduction

1.1 History

This thesis deals with the transport of waves through disordered media. Interference
of waves plays an important role in the (static) fluctuations on transport properties
and makes the transport properties of waves different from “classical” transport of
particles. The interest in the transport properties of disordered media received new
impetus in the early eighties with the discovery of Universal Conductance Fluctua-
tions (UCF) in disordered conductors cooled below 1 Kelvin[1, 2] and the discovery
of enhanced backscattering of light from a disordered dielectric sample[3, 4]. The
fluctuations on the conductance turned out to be independent of sample parameters
such as the conductance itself, the size of the sample, or the mean free path of the
electrons in the sample, hence the name UCF. For the observation of UCF the con-
ductors needed to be several mean free paths thick and in the mesoscopic regime,
i.e. the mean free path � is smaller than the dephasing length �φ or equivalently the
inelastic scattering length �in; � � �φ, �in. It was soon discovered that interference
of electron wave functions plays a crucial role in the explanation of the phenomenon.
Enhanced backscattering of light is the effect that light scattered from a disordered
dielectric sample shows an enhanced intensity in the exact backscatter direction (for
the copolarized intensity). The intensity in the exact backscatter direction is twice
as high as expected from a “classical” description, the effect is caused by light that
interferes with light that has travelled along a time reversed path through the disor-
dered sample. Both discoveries were the start of a new discipline in physics, known
as Mesoscopic Physics[5, 6].

In 1958 P. W. Anderson showed that electrons can become localized when subject
to a spatially random potential; Electron transport undergoes a drastic change from
a finite conductance to zero conductance at a critical disorder, known as Ander-
son localization[7]. It is believed that interference plays an important role in this
process.

The analogy between electrons and light (i.e. their wave character) has led to
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a vivid search for Anderson localization of light. Although Anderson localization of
light has not been observed yet, the pursuit of this goal has led to many interest-
ing discoveries on the propagation of light in disordered structures and the role of
interference.This thesis deals for a large part with experiments on the precursors of
the optical analogue of the Universal Conductance Fluctuations and with the dis-
tribution of the fluctuations. The last part of this thesis addresses interference in a
disordered structure with non-linear susceptibility. Interference of both fundamental
and second harmonic generated light is described.

1.2 Outline of this thesis

In chapter 2 an introduction into multiple scattering theory is given. First a par-
ticle diffusion model is presented. Then the wave equation with a random potential
is introduced along with useful concepts such as the optical theorem. The differ-
ence between multiple scattering on the amplitude level and on the intensity level
is explained. It is shown that diffusion of light is derived on the intensity level. The
diffusion constant and speed of propagation are derived from a microscopic picture.
Finally these results as derived for an infinite disordered medium are applied to a
slab geometry, where the appropriate boundary conditions are found from transport
theory. The last part explains how the incoming and outgoing intensities are cou-
pled to the intensity propagators inside the slab and gives simple expressions for the
coupling that will be used throughout this thesis.

In chapter 3 we go beyond the diffusion approach and calculate higher moments
of the intensity. In chapter 2 we were interested in the average intensity, a quantity
in which the wave character was not manifest. In the results of chapter 3 however,
interference of waves plays a major role. The distribution of the fluctuations in laser
speckle is discussed shortly, as is the number of independent speckles in reflection
and transmission of a disordered slab. The model of a wave guide with disorder
is introduced, and employing this model it is shown that correlation exists on the
fluctuations in transmission. As shown in an article by Feng et al.[8] three types of
correlation can be distinguished. The first type is known as the short-range correla-
tion. The second type of correlation (the long range correlation) will be the subject
of extensive theoretical discussion, both here and in Appendix A. (An experimental
study will be discussed in chapter 4.) The third type of correlation is the optical
analogue of the UCF. We start with the calculation of the short-range correlation.
The results of this calculation are then used to obtain the long range correlation in
a Langevin approach. At the end of chapter 3 a physical interpretation of the origin
of the long range correlation is given. In Appendix A a diagrammatic calculation of
the long range correlation is presented. The results of the diagrammatic calculation
agree completely with the results of the Langevin approach in this chapter.

In chapter 4 the measurements on the long range correlation are presented. The
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experimental set-up is described, and the precautions taken to ensure that the mea-
sured fluctuations result from interference effects inside the disordered sample only
are discussed. We present measurements of the short-range correlation, and deduce
the diffusion constant of the light from them. It is shown that the finite wavelength
range over which the fluctuations could be measured in the long range correlation
experiment influences the results. It is explained how the data were analysed to
get past this problem. Finally the long-range correlation functions as measured for
several different samples and experimental parameters are presented and compared
with the theory of chapter 3. The reader, discouraged by the tedious calculations in
chapter 3, is amply rewarded for his or her effort by the beautiful agreement between
experiment and theory. The experimental results even allow for an evaluation of the
energy transport velocity, and constitute an independent confirmation of its drastic
reduction compared to the vacuum velocity, that was found earlier by van Albada
et al.[9].

In chapter 5 we study the distribution of the fluctuations on the total transmis-
sion. The interest in this distribution was raised through an article by Kogan et
al.[10], who derived theoretically that the speckle statistics in transmission through
a disordered medium crosses over from a Rayleigh distribution to a stretched ex-
ponential, as was earlier found experimentally by Genack and Garcia[11]. For the
total transmission Kogan et al. found to lowest order in the conductance a Gaussian
distribution of the fluctuations. The distribution of the electronic conductance fluc-
tuations was first calculated by Altshuler, Kravtsov and Lerner[12]. They showed
that the distribution of the conductance changes from Gaussian to log-normal as
one approaches the Anderson transition. Based on the analogy between de Broglie
waves and light waves[13], this raised the question whether a deviation from a Gaus-
sian distribution was present in our experimental results on the total transmission.
In chapter 5 the experimental distribution of the total transmission is presented. It
is shown that indeed a third cumulant is present in the distribution (i.e. a deviation
from a Gaussian distribution). Heuristic arguments predict a quadratic relation be-
tween the second and the third cumulant, and this is indeed found in the experiment.
Careful statistical analysis of the data even gives the prefactor of the quadratic re-
lation, which is in agreement with a theoretical calculation. In Appendix B the
quadratic relation between the second and third cumulant is proven by a diagram-
matic calculation, which also gives the prefactor.

In chapter 6 the interference of second harmonic light generated by a non-linear
susceptibility of a disordered medium is studied. Agranovich and Kravtsov [14] and
Kravtsov, Agranovich and Grigorishin[15] showed that enhanced backscatter should
occur in the second harmonic light generated in a non-linear disordered medium.
The effect, however, is small. Much larger effects are expected for the short-range
correlation in transmission and reflection of the second harmonic speckle. In chapter
6 these correlations are studied, and compared to their linear counterparts. The ex-
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perimental set-up and the sample preparation are described. The measurements of
the fundamental and second harmonic correlation functions are presented, and com-
pared with theory. As most striking result it is found that the correlation function of
the second harmonic light in reflection scales with the sample thickness, whereas the
linear correlation function in reflection scales essentially with the mean free path.
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Chapter 2

Diffusion of light

In this chapter an introduction to the multiple scattering theory is given. We begin
with the diffusion of particles through a disordered medium, known as classical
diffusion since interference plays no role. After this short introduction of diffusion
we turn to the equation of motion of waves. The basic principles of the scattering
of waves are introduced. First the scattering of waves by a single particle is treated,
then by a collection of scatterers. It will be shown that on the amplitude level, there
is no diffusion. A propagator for the intensity is constructed, and this propagator
will satisfy a diffusion equation. Since the experiments are always done on finite
disordered structures, we will explore the boundary conditions of a finite disordered
medium on multiple scattered (diffuse) light. To this end, results from transport
theory are introduced. From these boundary conditions an intensity propagator for
the slab geometry is derived. This is the main result of this chapter. The last part
deals with the total amount of light that is reflected from and transmitted through
a disordered slab. Part of the theory in this chapter is based on Ishimaru[16],
Frisch[17], van der Mark et al.[18], van Tiggelen et al.[19] and Kirkpatrick[20].

2.1 Classical diffusion

Let us assume that light diffuses as particles do through a random structure. In one
dimension the equation of motion is

∂n(x, t)

∂t
= D

∂2n(x, t)

∂x2
, (2.1)

with n(x, t) the one particle probability density and D the diffusion constant. At
t = 0 the boundary condition n(x, 0) = δ(x) is imposed. The solution to Eq. (2.1)
can be found by substituting the Fourier transform of n(x, t),

n(x, t) =
1

2π

∫
n(k, t)e−ikxdk, (2.2)
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into the equation of motion. The substitution yields

∂n(k, t)

∂t
= −Dk2n(k, t), (2.3)

with the solution,
n(k, t) = n(k, 0)e−Dk

2t, (2.4)

and boundary condition n(k, 0) = 1. Transforming this solution to real space gives
the solution to the equation of motion,

n(x, t) =
1

√
4πDt

e−x
2/4Dt. (2.5)

In three dimensions the solution is

n(r, t) =
1

(4πDt)3/2
e−r

2/4Dt. (2.6)

Eq. (2.6) describes the one particle probability density at arbitrary time t and po-
sition r due to an initial delta distribution.

2.1.1 Specific intensity

The one particle probability density can be converted to the specific intensity, com-
monly used in transport theory of light[21]. The specific intensity is defined as the
average power flux density within a unit frequency band centred at frequency ν
within a unit solid angle in the direction defined by the unit vector ŝ,

I(r, ŝ) =

[
Joule

dSdΩdνdt

]
, (2.7)

with dS, dΩ, dν and dt respectively the unit area, solid angle, frequency and time.
In this thesis the unit energy is implicitly assumed, and the frequency is integrated
over in the specific intensity. The unit of the specific intensity becomes per meter
squared per second per steradian. With the specific intensity we can define the
average intensity and the energy density respectively as,

I(r) ≡
1

4π

∫
4π

I(r, ŝ)dΩ, (2.8)

and

u(r) ≡
1

v

∫
4π

I(r, ŝ)dΩ, (2.9)

with v the speed of light in the medium. Later we will use vE, the energy transfer
velocity, for the speed of light in the medium. Since the energy density u(r) is
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analogous to the particle density n(r, t), the following intensity distribution is found
from Eqs. (2.6, 2.8, 2.9),

I(r, t) =
v

4π

1

(4πDt)3/2
e−r

2/4Dt, (2.10)

with as isotropic source,

I(r, t = 0) =
v

4π
δ(r). (2.11)

2.2 The wave equation with disorder

In the previous section Eq. (2.10) describes classical diffusion of light, based on a
particle picture. We will turn to the wave picture of light and derive light diffusion
from a wave equation with disorder. In this section we will introduce the scattering
of waves by a single particle, and derive an important conservation law, the optical
theorem. The light waves will be treated as scalar waves. The scalar wave equation
is

∇2Ψ(r, t)−
ε(r)

c2
∂2

∂t2
Ψ(r, t) = 0, (2.12)

with c the speed of light in the vacuum and ε(r) the dielectric constant. The dielec-
tric constant is a function of the disorder in the medium. The dielectric constant
can be split into two parts, a constant part, and a part that depends on the disor-
der, ε(r) ≡ ε + (ε(r) − ε) where ε is the dielectric constant outside the scatterer.
For simplicity we assume the dielectric constant outside the scatterer to be unity.
The classical wave equation can be made time independent by taking monochro-
matic waves, Ψ(r, t) = ReΨ(r)eiEt, where E stands for the internal frequency of the
waves. The wave equation becomes,

−∇2Ψ(r)−
E2

c2
Ψ(r) = V (r)Ψ(r), (2.13)

with V (r) = E2

c2
(ε(r)− 1). Note that the potential V (r) depends on the frequency

of the wave. This is an important difference from the scattering of electron waves,
since for electrons the potential does not depend on the frequency of the waves.

2.2.1 Fields, intensity and units

The energy density and the current density associated with the scalar wave equation
Eq. (2.13) in homogeneous media are respectively[22],

W =
εε0

2

∣∣∣∣∣∂Ψ

∂t

∣∣∣∣∣
2

+
1

2µ0
|∇Ψ|2 ; J =

1

µ0
Im

[(
∂Ψ

∂t

)∗
∇Ψ

]
. (2.14)

One can make the identification with the electromagnetic fields,

∣∣∣ �E∣∣∣ =
∂Ψ

∂t
; �B = ∇Ψ, (2.15)



8 Diffusion of light

where the field Ψ has units volts second per meter Applying the slowly varying
wave approximation and cycle averaging, the current density, which is the specific
intensity, becomes,

I(r, ŝ) = ηΨ(r)Ψ∗(r)
[

J

m2s

]
; η =

ε0c
2E2

2vφ

[
J

V 2s3

]
, ŝ =

k

|k|
, (2.16)

with E the internal frequency of the waves, k the wave vector of the waves, c/vφ the
refractive index, and vφ the phase velocity. For convenience the units volt second
of the scalar waves are omitted throughout this thesis. This gives us the following
units,

Ψ =
[

1

m

]
η =

[
J

s

]
ε = [s] ηε = [J ] , (2.17)

where ε is a unit time that we will use later. The unit power is η and the unit energy
is ηε. The intensity is thus simply expressed as,

I = ΨΨ∗ in units η. (2.18)

2.2.2 Free space propagator

The free space propagator g(r) is the solution of the wave equation in the absence
of scatterers,

−∇2g(r)−
E2

c2
g(r) = δ(r). (2.19)

The solution is found by a Fourier transform of the above equation,

∫
eipr

(
∇2g(r)−

E2

c2
g(r)− δ(r)

)
dr = 0, (2.20)

resulting in,

(p2 −
E2

c2
)
∫

drg(r)eipr = 1, ⇒ g(p) =
1

p2 − E2/c2
, (2.21)

and after transforming to real space,

g(r) =
eiE|r|/c

4π|r|
. (2.22)

2.2.3 The t-matrix

With the help of the green’s function in Eq. (2.22) we can write an iterating solution
for the wave function in the presence of one scatterer,

Ψ(r) = Ψ0(r) +
∫

dr′g(r− r′)Vα(r′)Ψ(r′), (2.23)
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Figure 2.1: Symbols in figures

Figure 2.2: Series of recurrent scattering from the same scatterer.

where Ψ0(r) is a homogeneous solution of the differential equation Eq. (2.13), and
Vα(r) is the potential of the scatterer with index α. Iteration of Eq. (2.23) gives an
explicit sum of scattering events, each term in the series represents a higher order
scattering contribution of the same scatterer. The solution can be written as,

Ψ(r) = Ψ0(r) +
∫

g(r, r1)tα(r1, r2, E)Ψ0(r2)dr1dr2, (2.24)

with the scattering matrix tα(r1, r2, E) representing the series,

tα(r1, r2, E) = Vα(r1)δ(r1 − r2) + Vα(r1)g(r1, r2)Vα(r2) +∫
Vα(r1)g(r1, r

′)Vα(r′)g(r′, r2)Vα(r2)dr
′ + · · · , (2.25)

known as the Born series. The dependence on the frequency of the t-matrix comes
about through the dependence of the potential V on E. In Fig. (2.1) the graphical
definition of symbols used in drawing diagrams is given. The series Eq. (2.25) is
graphically depicted in Fig. (2.2). The Fourier transform of Eq. (2.24) is given by,

Ψ(p) = Ψ0(p) +
1

(2π)6

∫
g(p,p2)tα(p2,p1, E)Ψ0(p1)dp2dp1, (2.26)

with

g(p,p′) =
δ(p− p′)

p2 − E2/c2
; tα(p,p′, E) =

∫
tα(r, r′, E)e−ipreip

′r′drdr′. (2.27)

A closer look at Eqs.(2.26) and (2.27) reveals the physical meaning of t(p,p′, E).
Suppose as the homogeneous solution Ψ0(r) = e−iEŝr/c with ŝ a unit vector in the
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direction of the travelling wave, then Ψ0(p
′) = (2π)3δ(p′ − Eŝ/c). The scattering

matrix t(p′′,p′, E) in Eq. (2.26) gives the transfer of incoming wave vector p′ to
the outgoing wave vector p′′ by a single particle. The Green’s function g(p,p′′)
describes the propagation of this outgoing wave. The Green’s function peaks around
the value |p| = |p′| = E/c. The resulting solution Ψ(p) is a function of p with a
contribution from the unscattered wave (a delta function) and a contribution from
the scattered wave that peaks around the value |p| = E/c. In general t(p,p′, E) is
a complicated function of the shape and size of the scattering particle. In 1908 Mie
found the solution of the t-matrix for a spherical particle and for vector waves half
on-shell, i.e. |pin| = E/c. The solution of the on-shell part of the t-matrix for s-wave
scattering (i.e. isotropic scattering) of a particle with radius a is given by[23],

t(|pout| =
E

c
, |pin| =

E

c
,E) =

(
4πce−2iaE/c

mE cot(maE/c)− iE
−

4πce−iaE/c sin(aE/c)

E

)
,

(2.28)
where m is the ratio between the refractive index inside and outside the sphere.
The on-shell t-matrix of the spherical particle has a resonance when the cotangent
approaches zero[24]. The first resonance appears at the internal frequency Eres =
πc
2ma

. However the full t-matrix of a finite size particle is not available and we restrict
ourself to point scatterers, and develop a multiple scattering theory based on the
t-matrix of the point scatterer.

For point scatterers the fluctuating part of the dielectric constant is given by,

ε(r)− 1 =
∑
α

δ(r− Rα)µ, (2.29)

with µ a constant of dimension volume. For a single point scatterer this leads to
Vα(r) = V δ(r−Rα), with Rα the position of the scatterer and V ≡ µE2

c2
. The Born

series Eq. (2.25) reduces to,

tα(r1, r2, E) = δ(r1−Rα)δ(r2−Rα)×

[V + V g(Rα,Rα)V + V g(Rα,Rα)V g(Rα,Rα)V + · · ·] . (2.30)

The closed form expression for the Born series in Eq. (2.30) is,

tα(r1, r2, E) = δ(r1−Rα)δ(r2−Rα)
V

1− V g(Rα,Rα)
. (2.31)

In the remainder of this section the index α is dropped.

2.2.4 Second order Born approximation to a point scatterer

There exist a problem with the Born series. The Green’s function g(r, r′) goes to
infinity in the limit r′ → r, and the series for t(r1, r2, E) in Eq. (2.30) goes to infinity,
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while the closed form expression in Eq. (2.31) goes to zero. This makes the Born
series useless. An often used approximation is to retain only the first two terms
of the Born series, and to neglect the infinite real part of the expansion of g(r, r′)
around r = r′,

lim
r→0

g(r) = lim
r→0

1

4π|r|
+

iE

4πc
⇒

iE

4πc
, (2.32)

t(r1, r2, E) ≈ δ(r1−R)δ(r2−R)
(
V + iV 2Im(g(R,R))

)

≈ δ(r1−R)δ(r2−R)
(
V + V 2

iE

4πc

)
. (2.33)

This is known as the second order Born approximation. One also can sum the series
in Eq. (2.30) neglecting the real part of Eq. (2.32), giving the closed form for the
scattering matrix t (known as the Fermi-Wu Approximation),

t(r1, r2, E) = δ(r1−R)δ(r2−R)t(E) with t(E) =
V

1− iV E
4πc

. (2.34)

As will be shown in the next section the last expression obeys the optical theorem
for all orders in V , while Eq. (2.33) obeys the optical theorem only to second order
in V . The closed form of the t-matrix in the Fourier representation is,

t(p,p′, E) = eiR(p
′−p)t(E) with t(E) =

V

1− iV E
4πc

. (2.35)

The price we have paid for restricting ourselves to point scatterers is the absence of
resonances in the t-matrix. In section 2.5 it will be shown that resonances in the
t-matrix can strongly influence energy transport of light. Nieuwenhuizen et al.[25]
have shown that the first resonance of the on-shell t-matrix in Eq. (2.28) can be
build into the t-matrix of the point scatterer. We will not go into details, but only
give this t-matrix for didactic purposes.

t(r1, r2, E) = δ(r1−R)δ(r2−R)

(
Veff

1− Veff
iE
4πc

)
, with Veff =

V

1− E2/E2res
. (2.36)

2.2.5 Optical theorem

In this section the cross sections of a single scatterer and the connection with the
t-matrix is derived. A conservation law (the amount of light scattered out of a beam
by a lossless scatterer is equal to the amount of scattered light) leads to a relation
between the square of the absolute value of the t-matrix and the complex part of the
t-matrix, the optical theorem. The scattering cross section σsc and the extinction
cross section σex are defined in Eq. (2.39) and Eq. (2.42) [26, 16]. The scattering
cross section σsc can be interpreted as the area perpendicular to the incoming flux
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through which the same intensity flows as scattered intensity flows through a sphere
around the scatterer. The radius of the sphere is assumed to be much larger than the
wavelength (far-field approximation) and the scattering is assumed to be isotropic
(the scattered amplitude is independent of the direction). The total amplitude is
given by Eq. (2.24) (Ψinc = Ψ0),

Ψ(r) = Ψinc(z) + Ψsc(r), (2.37)

with Ψinc(r) = eiEz/c and Ψsc(r) the wave scattered by the scatterer (assuming the
scatterer in the origin),

Ψsc(r) =
eiEr/c

4πr
t(E) far-field approximation r  λ. (2.38)

The incoming amplitude Ψinc does not give a contribution to the flux through the
sphere, so the scattering cross section is given by,

σsc ≡
∫
4π

Ψ∗sc(r)Ψsc(r)r2dΩ =
∫
4π

r2
t(E)t∗(E)

(4πr)2
dΩ =

t(E)t∗(E)

4π
. (2.39)

The extinction cross section σex describes the amount of intensity that has disap-
peared from the incoming plane wave incident from z = −∞. The intensity through
a plane of area A perpendicular to the z-axis far away from the position of the
scatterer is integrated and compared to the flux in the absence of the scatterer. The
difference gives the extinction cross section. Far away from the origin and in the
neighbourhood of the z-axis r can be approximated, r ≈ z + (x2 + y2)/2z, and the
amplitude is,

Ψ(r) ≈ eiEz/c + t(E)
eiEz/c

4πz
eiE(x

2+y2)/2zc. (2.40)

The intensity for large z is,

Ψ∗(r)Ψ(r) ≈ 1 + Re

(
t(E)

2πz
eiE(x

2+y2)/2zc

)
, (2.41)

where the term that decays with z−2 has been neglected. The extinction cross section
is,

σex ≡
∫
A
−Re

(
t(E)

2πz
eiE(x

2+y2)/2zc

)
dxdy =

c Im t(E)

E
. (2.42)

The extinction cross section is the area over which the incoming intensity has to be
integrated to remove the same amount of intensity out of the incident wave as in
the presence of the scatterer. The albedo a is defined as the ratio of the scattered
intensity and the removed intensity,

a =
σsc

σex
. (2.43)
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If there is no absorption (albedo a = 1) the scattered intensity and the removed
intensity should be equal, so σsc = σex. This is called the optical theorem, and leads
with Eqs. 2.39 and 2.42 to the equality

t(E)t∗(E)

4π
=

c Im t(E)

E
. (2.44)

It can easily be verified that the closed form of the t-matrix (Eq. (2.34)) obeys the
optical theorem to all orders in V . In the case of absorption (a < 1) the absorption
cross section can be defined as,

σabs ≡ σex − σsc, (2.45)

and gives the area over which to integrate the incoming intensity to get the absorbed
intensity. The optical theorem does not hold anymore and one finds instead of
Eq. (2.44),

t(E)t∗(E)

4π
=

ac Im t(E)

E
. (2.46)

2.3 Waves in the multiple scattering regime

In the previous sections the free space propagator and the scattering properties of
a single point scatterer were derived. In this section we extend the theory to the
multiple scattering regime. The full Green’s function, that describes the propagation
in the presence of many scatterers, is derived, and the recurrent scattering from the
same particle is discussed. At the end a relation between the mean free path � and
the t-matrix is found in the lowest order in the density.

2.3.1 The full Green’s function

First the propagator in the presence of many scatterers is sought. The full Green’s
function is the solution of the following equation,

−∇2G(r, r′)− [
E2

c2
+
∑
α

Vα(r)]G(r, r′) = δ(r− r′). (2.47)

The scattering properties of a single particle are known. The solution to the above
equation can be written as a series of scattering from the particles in the volume,

G(r, r′) = g(r, r′) +
∑
α

∫
g(r, r1)tα(r1, r2)g(r2, r

′)dr1dr2 +

∑
α�=β

∫
g(r, r1)tα(r1, r2)g(r2, r3)tβ(r3, r4)g(r4, r

′)dr1dr2dr3dr4 + · · · . (2.48)

where the greek indices label different particles. The series is graphically depicted
in Fig. (2.3).
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Figure 2.3: Series for the full Green’s function

Figure 2.4: Series of the mass operator Σ

2.3.2 The mass operator

Introducing the mass or self energy operator, Σ(r, r′), Eq. (2.48) can be written as
an iterating equation,

G(r, r′) = g(r, r′) +
∫

g(r, r1)Σ(r1, r2)G(r2, r
′)dr1dr2, (2.49)

with the mass operator defined as,

Σ(r, r′) =
∑
α

tα(r, r′) +

∫ ∑
α�=β

tα(r, r1)g(r1, r2)tβ(r2, r3)g(r3, r4)tα(r4, r
′)dr1dr2dr3dr4 + · · · . (2.50)

The mass operator can be interpreted as the interaction part of a Hamiltonian.
Fig. (2.4) gives the different contributions the mass operator, irreducible parts that
can be written fully in terms of t-matrices. The average Green’s function is now
given by,

〈G(r, r′)〉 = 〈g(r, r′)〉+
∫
〈g(r, r1)〉〈Σ(r1, r2)〉〈G(r2, r

′)〉dr1dr2, (2.51)

Angular brackets denote averaging over the disorder. Averaging is done by integrat-
ing over the positions of all scatterers and dividing by the volume to the power of the
number of scatterers. Since the averaged Green’s functions and the mass operator
have to be translationally invariant, they can be defined as,

〈g(r, r′)〉 ≡ g(r− r′); 〈G(r, r′)〉 ≡ G(r− r′); 〈Σ(r, r′)〉 ≡ Σ(r− r′). (2.52)
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and in the Fourier domain the integral equation Eq. (2.51) is given by,

G(p) = g(p) + g(p)Σ(p)G(p), (2.53)

which leads to the result,

G(p) = [g(p)−1 − Σ(p)]−1 = [p2 − E2/c2 − Σ(p)]−1. (2.54)

2.3.3 The full Green’s function in real space

The full Green’s function describes the propagation of the amplitude in the medium.
The pole of the full Green’s function in Eq. (2.54) has shifted with respect to the
pole of the free space propagator (Eq. (2.21)). The real part of the mass operator
shifts the pole to a larger wave vector, i.e. to smaller wavelengths, due to the average
refractive index of the medium. The imaginary part of the mass operator leads to an
exponential decay of the full Green’s function in real space caused by the scattering
of the amplitude out of the propagation direction. To show this explicitly first an
approximate expression for the averaged mass operator is derived,

〈Σ(r, r′)〉 =
∫
V

∏
α

dRα
V

(∑
α

tα(r, r′) +

∑
α�=β

∫
tα(r, r1)g(r1, r2)tβ(r2, r3)g(r3, r4)tα(r4, r

′)dr1dr2dr3dr4 + · · ·
)
. (2.55)

with V the volume that is integrated over, the summation is over the particles in the
volume and Rα is the position of particle α. Included in the definition of the mass
operator are all scattering events, including these events where the wave is scattered
from one particle to another and back, i.e. recurrent scattering from the same
particle. The recurrent scattering contributions are of higher order in the density,
and their inclusion in the mass operator leads to more and complex diagrams in the
intensity propagator[27]. We restrict ourselves to a mass operator up to linear order
in the density, and derive the intensity propagator based on this mass operator in
section 2.4. The mass operator is approximated by the first term in Eq. (2.55),

〈Σ(r, r′, E)〉 ≈
∫ ∏

α

dRα
V

(∑
α

t(E)δ(r−Rα)δ(r′−Rα)
)

= nt(E)δ(r−r′), (2.56)

with n the density of the scatterers. The explicit expression of the mass operator in
Eq. (2.56) in the Fourier domain does not depend on p,

Σ(p) = nt(E). (2.57)

The real space full Green’s function, as derived from Eq. (2.54), is,

G(r) =
eiK|r|

4π|r|
, (2.58)
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with

K ≡
√
E2/c2 + Σ(E) =

√
E2/c2 + nt(E) ≡ k +

i

2�
, (2.59)

with � the mean free path in the medium. To linear order in the density k and � are
found by expanding the square root in the above equation,

k =
E

c

(
1 +

nc2Re t(E)

2E2

)
; � =

E

nc Im t(E)
=

1

nσex
. (2.60)

The real part of the average refractive index leads to a new wave vector k in the
medium, due to the real part of the t-matrix. The imaginary part of the t-matrix
is connected with the mean free path in the medium. The mean free path, and
thus the imaginary part of the t-matrix, describes the exponential decay of the
propagating wave by scattering out of its propagation direction. The amplitude
propagator decays exponentially, i.e. has a short range, and does not lead to long
range diffusion. Using Eq. (2.42) the mean free path in Eq. (2.60) is expressed in
the density and the extinction cross section. Finally the optical theorem Eq. (2.46)
and Eq. (2.60) are used to find a very useful relation between the density times the
square of the absolute value of the t-matrix and the mean free path,

nt(E)t∗(E) =
4πa

�
. (2.61)

2.3.4 Coherent intensity

To show that the results for the wave propagation in the disordered regime do not
lead to diffusion of the intensity, we will apply the results of the previous section to
a plane wave falling on a semi-infinite disordered medium in the half space z > 0.
Using the full Green’s function the average amplitude in a semi-infinite medium
originating from a plane wave coming from z = −∞, Ψinc(r) = eiEz/c is,

〈Ψ(r)〉 = Ψinc(r) +
∫
z≥0

G(r, r′)nt(E)Ψinc(r
′)dr′. (2.62)

Since the problem is translationally invariant in the x and y direction, these coor-
dinates can be integrated out of the Green’s function.

G(z, z′) =
∫ ∞
−∞

dxdy
eiK(x

2+y2+(z−z′)2)1/2

4π(x2 + y2 + (z − z′)2)1/2
=

i

2K
eiK|z−z

′|. (2.63)

For the average amplitude at depth z we find,

〈Ψ(z)〉 = eiEz/c +
∫
z′≥0

dz′
ieiK|z−z

′|

2K
nt(E)eiEz

′/c =
E/c + K

2K
eiKz. (2.64)

To first order in the density the amplitude of the transmitted wave at z = 0 in
Eq. (2.64) is equal to the fresnel coefficient[28]. The average amplitude leads to the
average coherent intensity at depth z, Icoh(z),

Icoh(z) ≡ 〈Ψ(z)〉〈Ψ∗(z)〉 =
(E/c + K)(E/c + K∗)

4KK∗
eiz(K−K

∗) ≈ e−z/�. (2.65)
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The above intensity does not describe the diffusion of the light, nor does it describe
the diffuse intensity. It gives the exponential decay of the impinging coherent in-
tensity, known as Lambert-Beer’s law. Apparently to find diffusion we cannot start
from the average amplitude in the medium. To describe the diffuse intensity we have
to develop a multiple scattering theory on the intensity level, which shall first be
done for the infinite medium. In section 2.6 we return to the semi-infinite medium .

2.4 Intensity in the multiple scattering regime

From the previous section it is clear that a multiple scattering theory on the am-
plitude level does not describe the diffuse intensity, nor does it lead to diffusion of
the light. Multiple scattered amplitudes having travelled along different paths do
not give a net contribution to the averaged intensity, since their phases are random
because of different path lengths. To obtain the diffuse intensity, one has to calcu-
late the product of the amplitude and its complex conjugate and then average over
the disorder 〈Ψ(r)Ψ∗(r)〉. In this section the intensity propagator in the station-
ary case is derived. Diagrams are constructed of paired amplitudes, that in lowest
order in the density lead to the so called ”Ladder vertex”, describing the diffuse
propagation[17]

2.4.1 Intensity propagator

We introduce the intensity propagator R, which is the product of two full Green’s
functions before averaging over the disorder,

〈R(r1, r2; r3, r4)〉 ≡ 〈G(r1, r2)×G∗(r3, r4)〉. (2.66)

The intensity propagator R is given by the following expansion using the series of
Eq. (2.48) for G(r, r′) and the t-matrix in Eq. (2.34),

〈R(r1, r2; r3, r4)〉 =∫ (
g(r1, r2) +

∑
α

(
g(r1,Rα)tα(E)g(Rα, r2)

)
+ · · ·

)
×

(
g(r3, r4) +

∑
β

(
g(r3,Rβ)tβ(E)g(Rβ, r4)

)
+ · · ·

)∏
α

dRα
V

. (2.67)

The integration over the positions of the scatterers Rα gives the average intensity
propagator. Some contributions to the series are given in Fig. (2.5). The two
amplitudes can visit the same scatterer, where the dashed line identifies the same
scatterers. The averaging over the position of the scatterers is after the identification
of the same particles in the sequence each amplitude scatters off. The leading
contributions to the series in Fig. (2.5) are given by those diagrams where the
amplitude and the complex conjugate travel along the same sequence of scatterers
because then their phase factors cancel exactly. The diagrams where the amplitudes
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Figure 2.5: Some contributions to the reducible series of the amplitude and its
complex conjugate.

Figure 2.6: Lowest order contributions to the irreducible vertex U .

return to a scatterer that was already visited are of higher order in the density. The
”backbone” of the series in Fig. (2.5) is given by the diagrams in Fig. (2.6). These
are the ”irreducible” parts U of the series in Fig. (2.5). By irreducible is meant that
one cannot disentangle the diagrams by cutting across two propagators, without
cutting also a dashed line. The vertex 〈R〉 can now be written as an expansion in
irreducible parts,

〈R〉 = 〈G〉 × 〈G∗〉+ (〈G〉 × 〈G∗〉)〈U〉〈R〉. (2.68)

2.4.2 The Ladder vertex

The manipulations in section 2.4.1 are still formal, the actual form of U is too
complex and contains too many terms to do calculations with[27]. The full form of
U is approximated by the first irreducible diagram in Fig. (2.6) (i.e. to lowest order
in the density), denoted by 〈l〉, where 〈l〉 is given by,

〈l〉 = nt(E)t∗(E) =
4πa

�
. (2.69)

Thus the intensity inside the disordered medium will be calculated in lowest order
in the density, all diagrams where the phase factors of the Green’s functions do not
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Figure 2.7: The vertex L, an infinite sum of ladder terms (see Eq. (2.70)). The
vertex L starts and ends on a scatterer.

exactly cancel will be neglected. Among the neglected diagrams are the localiza-
tion corrections to the diffuse propagation of the light[20, 29, 30, 31] The important
class of diagrams known as the most crossed diagrams, responsible for the enhanced
backscatter, are neglected also. For a comprehensive treatment of the most crossed
diagrams, see van der Mark, van Albada and Lagendijk[18] and Ref. [32]. As is
clear from the Fig. (2.5) and Eq. (2.67) the vertex 〈R〉 contains incoming and out-
going amplitude propagators. The skeleton of 〈R〉, 〈L〉 is defined as the diagrams
without the incoming and outgoing amplitude propagators. The Bethe-Salpeter like
equation[33] for 〈L〉 is given by,

〈L〉 = 〈�〉+ 〈�〉(〈G〉 × 〈G∗〉)〈L〉. (2.70)

The Ladder vertex 〈L〉 is graphically depicted in Fig. (2.7). In real space Eq. (2.70)
is given by,

L(r) =
4πa

�
δ(r) +

4πa

�

∫
e−|r

′|/�

(4πr′)2
L(r− r′)dr′. (2.71)

The convolution in r-space is most easily solved by transforming to the p-space,
which results in,

L(p) =
4πa

�
+

4πa

�
×

1

4π|p|
arctan(|p|�)L(p). (2.72)

Since we are interested in the long range behaviour, i.e. the regime where |p|� is
small, the arctan(|p|�) can be approximated by[34],

arctan(x) =
x

1 + 1
3
x2

, |x| ≤ 1. (2.73)

For L(p) this results in,

L(p) =
4πa

�

(
1 +

3a

3(1− a) + p2�2

)
. (2.74)

Transforming back to real space gives,

L(r) =
4πa

�
δ(r) +

3a2 e−|r|/�abs

�3|r|
, (2.75)

with the absorption length �abs defined as �abs ≡ �/
√

3(1− a). The first term in

Eq. (2.75) is the contribution from the vertex 〈l〉, the second term is the linear decay
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of the multiple scattered intensity inside the disordered medium. The absorption
gives an exponential decay for lengths longer than the absorption length �abs. As
can be seen in Fig. (2.7) the Ladder vertex L starts and ends on a scatterer. With
Eq. (2.75) we have found diffusion of light in the stationary case!

2.5 The time-dependent Ladder vertex

The previous section gave the stationary state propagator of the diffuse intensity in
a disordered medium. We will now introduce time in the intensity propagator. Thus
we will be able to find the distribution in time and space of the diffuse intensity in
response to e.g. a short pulse. Also the time dependent propagator will give us
the distribution of path lengths (the time it takes) to go from point r1 to r2. In
this section the time dependent full Green’s function is discussed, and microscopic
expressions for the phase and group velocity are derived. At the end of this section
we will recover Eq. (2.10), but microscopic expressions are found for the velocity in
the medium, the diffusion constant, and the absorption length. The theory in this
section is based on work by van Tiggelen et al.[19, 31] and Kirkpatrick[20].

2.5.1 Time-dependent Bethe-Salpeter equation

To get the time dependent intensity propagator L(r, t), time is introduced into
the Bethe-Salpeter like equation Eq. (2.70). Since time dependence is more easily
handled in the frequency domain, Eq. (2.70) is Fourier transformed with ω conjugate
to the time t (for the moment the explicit space dependence is suppressed),

L(ω) = 〈�〉+ 〈�〉[〈G〉 ∗ 〈G∗〉](ω)L(ω), (2.76)

with [〈G〉∗〈G∗〉](ω) the convolution in the frequency domain. Since we are interested
in the long time behaviour (i.e. small ω) throughout this section the frequency
dependence is calculated to linear order in ω. The convolution in the frequency
domain [〈G〉 ∗ 〈G∗〉] is given by,

[〈G〉 ∗ 〈G∗〉](r, ω) =
∫ ∞
0

ei(ω+i0)tG(r, t)G∗(r, t)dt

=
∫ ∞
0

dt1dt2

∫ ∞
−∞

dE

2π
eiE(t1−t2)G(r, t1)G

∗(r, t2)e
1
2
i(w+i0)(t1+t2)

=
∫ ∞
−∞

dE

2π
G(r, E+)G∗(r, E−), (2.77)

where E+ and E− denote respectively E + ω/2 + i0 and E − ω/2− i0.

2.5.2 Wave packet

First it will be shown that by introducing a source with internal frequency Ω the
integration over E in Eq. (2.77) can be performed, and E is identified with the
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internal frequency Ω of the propagating waves. As a source a Gaussian wave packet
is considered, with the source of the waves defines as,

SΨ(r, t) ≡ 2 (2π)1/4 e−t
2/ε2+iΩt δ(r); S∗Ψ(r, t) ≡ 2 (2π)1/4 e−t

2/ε2−iΩt δ(r),
(2.78)

where Ω is the internal frequency of the waves, and ε is the unit time. The total
energy emitted by the source is,

η
∫

SΨ(r, t)S∗Ψ(r′, t)drdr′dt = 4πηε, (2.79)

with η unit power and ηε unit energy. Fourier transforming the source of the waves
gives,

SΨ(r, E) =
∫

SΨ(r, t)e−iEtdt = 2
(
2π3

)1/4
ε e−ε

2(E−Ω)2/4 δ(r)

S∗Ψ(r, E) = SΨ(E, r). (2.80)

The unscattered wave at time t (in the frequency domain) is given by,

〈Ψ(r, ω)〉 =
∫

SΨ(r′, ω)G(r′, r;ω)dr′. (2.81)

In analogy with Eq. (2.77) we find,

[〈Ψ〉 ∗ 〈Ψ∗〉](r, ω) =
∫ ∞
−∞

dE

2π
SΨ(E+)S∗Ψ(E−)G(r, E+)G∗(r, E−), (2.82)

where the space coordinates of the sources have been integrated out. Eq. (2.82) gives
the unscattered waves in the direction r̂ originating from the source. The explicit
form of the source in Eq. (2.82) is,

SΨ(E+)S∗Ψ(E−) = 4
(
2π3

)1/2
ε2 e−ε

2(E−Ω)2/2 e−ε
2ω2/8. (2.83)

For sufficiently large ε (i.e. a broad wave packet), the source peaks strongly around
the internal frequency Ω of the waves while the product of the Green’s functions in
Eq. (2.82) varies slowly. Thus the source can be replaced by a δ-function,

SΨ(E+)S∗Ψ(E−) = 8π2ε δ(E−Ω)e−ε
2ω2/8. (2.84)

Provided that 1/ω  ε, i.e. time scales much longer than the duration of the source,
the exponent in Eq. (2.84) is unity to linear order in ω. The condition 1/ω  ε
means that only the valid time behaviour of [〈Ψ ∗Ψ∗〉](r, ω) is found for times much
larger than the width of the wave package. Let us calculate the total flux through
a sphere of radius r due to the source defined in Eq. (2.78) in vacuum. The specific
intensity at r in the direction r̂ integrated over time (i.e. limω → 0) is given by,∫

I(r, r̂)dt = η lim
ω→0

[〈Ψ〉 ∗ 〈Ψ∗〉](r, ω)

= η lim
ω→0

∫ ∞
−∞

dE

2π
SΨ(E+)S∗Ψ(E−)g(r, E+)g∗(r, E−) =

ηε

4πr2
. (2.85)
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The total flux through a sphere of radius r is unity in units ηε. One important
remark needs to be made here. In general η[〈Ψ〉 ∗ 〈Ψ∗〉](r, t) does not give the
specific intensity, since the specific intensity has a direction (see Eq. (2.16)). In the
above example we know where the intensity was coming from (the origin) and the
interpretation as a specific intensity is justified. As the direction where the intensity
is coming from is known, η[〈Ψ〉∗ 〈Ψ∗〉](r, t) can be interpreted as a specific intensity.
In all other cases, care has to be taken. The conclusion of this subsection is that
the introduction of a source with internal frequency Ω eliminates the integral over
E in Eq. (2.77) and E is identified with the internal frequency Ω of the source.
The Bethe-Salpeter equation Eq. (2.76) for a broad light pulse centred at internal
frequency Ω = E becomes,

L(E, ω,p) = nt(E+)t∗(E−)+nt(E+)t∗(E−)[〈G〉∗〈G∗〉](E, ω,p)L(E, ω,p), (2.86)

with

[〈G〉 ∗ 〈G∗〉](E, ω,p) =
1

(2π)3

∫
G(E+,p′)G∗(E−,p′−p)dp′ (2.87)

For 〈�〉 the time dependence implies that the t-matrices have to be evaluated at the
appropriate internal frequencies E± = E ± ω/2, and the following substitution was
made in Eq. (2.86),

〈�〉 ⇒ nt(E+)t∗(E−). (2.88)

2.5.3 Time dependent Green’s function

Before solving the Bethe-Salpeter like equation (Eq. (2.86)) for the intensity propa-
gator, we will first use the time dependent full Green’s function to derive the phase
and group velocity of the amplitude. The ω-dependent Green’s functions are found
by substituting respectively E+ and E− into Eq. (2.54),

G(E+,p) =
1

p2 − (E+/c)2 − nt(E+)
; G∗(E−,p) =

1

p2 − (E−/c)2 − nt∗(E−)
.

(2.89)
The two poles of each Green’s function are evaluated to first order in ω. The pole of
the first Green’s function is calculated in detail. The two poles are given by |p| = K

with,

K±(ω) = ±

(
k2 +

ωE

c2
+

ωn

2
Re

∂t(E)

∂E
+ inIm t(E) +

iωn

2
Im

∂t(E)

∂E

)1/2
, (2.90)

where the expression for k in Eq. (2.60) was used. The square root is approximated
by extracting k2 out of the square root and using

√
1 + x ≈ 1 + x/2 for x� 1,

K±(ω) = ±

(
k +

ωE

2c2k
+

ωn

4k
Re

∂t(E)

∂E
+

in Im t(E)

2k
+

iωn

4k
Im

∂t(E)

∂E

)
. (2.91)
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From this expression for K the phase and group velocity of the waves can be derived,

vφ =

[
Re

K(ω)

E

]−1
=

E

k
≈ c

(
1−

n Ret(E)

2k20

)
, (2.92)

vgr =

[
Re

∂K(ω)

∂(w/2)

]−1
=

[
E

c2k
+

n

2k
Re

∂t(E)

∂E

]−1
≈

c2

vφ

(
1−

cvφn

2E
Re

∂t(E)

∂E

)
,

(2.93)
where the approximation is made to linear order in the density. Note that since the
expansion of the Green’s function was made in ω/2 the derivative in Eq. (2.93) is
taken with respect to ω/2. The pole of the complex conjugate Green’s function in
Eq. (2.89) is given by,

K
±

(ω) = ±

(
k −

ωE

2c2k
−

ωn

4k
Re

∂t(E)

∂E
−

in Im t(E)

2k
+

iωn

4k
Im

∂t(E)

∂E

)
. (2.94)

The real space Green’s functions are found by contour integration around the poles
given in Eqs. (2.91) and (2.94),

G(E+, r) =
1

(2π)3

∫
eipr

p2 − (E+/c)2 − nt(E+)
dp =

eiK
+|r|

4π|r|
, (2.95)

G∗(E−, r) =
1

(2π)3

∫
e−ipr

p2 − (E−/c)2 − nt∗(E−)
dp =

eiK
−
|r|

4π|r|
. (2.96)

2.5.4 Solving the Bethe-Salpeter equation

The time dependent vertex L(E, ω,p) is found by solving the frequency dependent
version of the Bethe-Salpeter equation Eq. (2.86),

L(E, ω,p) = nt(E+)t∗(E−) +

nt(E+)t∗(E−)

(2π)3
L(E, ω,p)

∫
G(E+,p′)G∗(E−,p′−p)dp′. (2.97)

The solution is,

L(E, ω,p) =
nt(E+)t∗(E−)

1−M(E, ω,p)
, (2.98)

with

M(E, ω,p) =
nt(E+)t∗(E−)

(2π)3

∫
G(E+,p′)G∗(E−,p′−p)dp′. (2.99)

To find the linear dependence on ω of L(E, ω,p) it is sufficient to evaluate the
dependence of M(E, ω,p) linear in ω. The linear expansion in ω of nt(E+)t∗(E−)
gives,

nt(E+)t∗(E−) =
4πa

�

(
1 + iωIm

(
∂ log t(E)

∂E

))
, (2.100)
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where Eq. (2.61) was used. The integral in Eq. (2.99) can be evaluated in real space,
since∫

G(E+,p′)G∗(E−,p′ − p)dp′ = (2π)3
∫

G(E+, r)G∗(E−, r)eiprdr. (2.101)

For the kernel M(E, ω,p) of the time-dependent Ladder equation this leads to

M(E, ω,p) =

a
�

(
1 + iωIm∂ log t(E)

∂E

)
1
�
− iω

(
E
c2k

+ cn
2E

Re∂t(E)
∂E

)
+ 1
3
p2�

, (2.102)

where i(K++K
−

) is used, given by,

i(K++K
−

) = −
nIm t(E)

k
+

iωE

c2k
+

iωn

2k
Re

∂t(E)

∂E
≈
−1

�
+ iω

(
E

c2k
+

cn

2E
Re

∂t(E)

∂E

)
.

(2.103)
The approximation is again to linear order in the density, and the expression for
� in Eq. (2.60) was used. Substituting the kernel M(E, ω,p) in Eq. (2.98) for the
Ladder this leads to,

L(E, ω,p) =
4πa

�
+

4πa2vE/�
2

−iω + vE(1− a)/� + 1
3
p2vE�

, (2.104)

with the energy transport velocity vE defined as,

vE ≡
c2

vφ

(
1−

cvφn

2E
Re

∂t(E)

∂E
−

avφ

�
Im

∂ log t(E)

∂E

)
, (2.105)

where the expression for the energy transport velocity was evaluated to linear order
in the density. Transforming to real space and time gives the final result,

L(r, t) =
4πa

�
δ(t)δ(r) +

4πa2vE
�2(4πDt)3/2

e−t/τae−r
2/(4Dt)Θ(t), (2.106)

with Θ(t) the Heaviside step function and with the microscopic expressions for the
diffusion constant D and the absorption time τa,

D ≡
vE�

3
; τa ≡

�

vE(1− a)
. (2.107)

To summarize, we have derived the time dependent Ladder vertex Eq. (2.106) by
evaluating the propagation of a wave packet with a finite spectral content. It turns
out that the speed of propagation that appears in the diffusion constant is neither
the group velocity nor the phase velocity, but a velocity named the energy trans-
port velocity vE that is a function of the wave energy dependence of the scattering
properties of the scatterer. For the t-matrix in Eq. (2.33) or Eq. (2.34) the en-
ergy transport velocity reduces to the group velocity, but when the t-matrix with
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Figure 2.8: The vertex H , on one end open (ending on Green’s functions), on
the other end closed (ending on a scatterer).

an internal resonance is used (e.g. Eq. (2.36)) the energy transport velocity differs
(strongly) from the phase or group velocity near the resonance of the scatterer[19].
For light a dielectric sphere can have strong resonances, and experimentally a re-
duction of the energy transport velocity by a factor of six compared to the vacuum
velocity has been reported[9] and will be found also experimentally in chapter 4.
Since the determination of the mean free path was often done by measuring the
diffusion constant, a large and unexpected reduction of the speed that appears in
the diffusion constant has great impact. For scatterers without a resonance (e.g. in
electron scattering) the two derivatives in Eq. (2.105) cancel.

2.5.5 Intensity distribution

We have found the time-dependent propagator L(r, t) in a disordered medium. To
obtain the intensity inside the medium a source and full Green’s functions have to
be connected to the Ladder propagator L in Eq. (2.106). The propagator L starts
and ends on a scatterer (see Fig. (2.7)). Since we will make extensive use of the
propagator that is closed on one end (i.e. beginning on a scatterer) and open on the
other end (i.e. ending in two full Green’s functions), it is introduced as H(r, t) (see
Fig. (2.8). Attaching amplitude propagators to the “bare” vertex L(r, t) gives,

H(r, t) ≡
1

4π

∫
dt′dr′L(r′, t′)G(r− r′, t− t′)G∗(r− r′, t− t′)

=
vEa

4π�(4πDt)3/2
e−t/τae−r

2/(4Dt). (2.108)

Note the factor of 1/4π before the integral. The end of the vertex L can be in-
terpreted as the source of the intensity at r′ that is propagated by the full Green’s
functions to r. Since the position r′ where the light is coming from is integrated over,
information where the intensity was coming from is lost. It amounts to integrating
the specific intensity over the full solid angle, which is equal to 4πI(r) (see Eq. (2.8)
and the remark after Eq. (2.85)). Therefore the integral in Eq. (2.108) is divided
by 4π. The propagator H converts specific intensity into isotropic (diffuse) inten-
sity. To find the diffuse intensity inside the disordered medium the specific intensity
originating from a source has to be attached to the diffuse intensity propagator H .
The specific intensity with unit flux through a sphere around the origin is given in
Eq. (2.82) with Eq. (2.84) as the source that radiates isotropic in all directions. The
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time-dependent intensity (in the frequency domain) is given by solving,

I(E, ω,p) = η[〈Ψ〉 ∗ 〈Ψ〉](E, ω,p)H(E, ω,p) =
4πηεM(E, ω,p)

nt(E+)t(E−)(1−M(E, ω,p))
.

(2.109)
The calculation yields,

I(E, ω,p) =
ηεvE

−iω + vE(1− a)/� + 1
3
p2vE�

. (2.110)

In real space and time the time dependent isotropic intensity distribution in the
disordered medium due to a source in the origin radiating a pulse at time t = 0 with
energy 4πηε is,

I(r, t) =
ηεvE

(4πDt)3/2
e−t/τae−r

2/(4Dt). (2.111)

One sees that the diagrammatic result for the diffuse intensity in the disordered me-
dium gives rise to the result obtained from the particle diffusion picture in Eq. (2.10),
only now microscopic expressions for the velocity in the medium Eq. (2.105), the
diffusion constant and the absorption length Eq. (2.107) were found. The difference
of a factor 4π comes from a different norm. Here the norm was a source with unit
total flux integrated over time (Eq. (2.85)) with a total energy of 4πηε (Eq. (2.79)),
in section 2.1 the norm was total density (energy). From now on the norm is unit
total flux η and we drop the explicit dependence of the intensity on unit power η.

2.6 Diffuse intensity in a semi-infinite medium

We will try to find the diffuse intensity inside the medium occupying the half space
z > 0 with an incident plane wave coming from z = −∞. The coherent (unscattered)
intensity inside the medium was given in subsection 2.3.4 by Eq. (2.65). Since the
system is not translationally invariant in the z coordinate, the intensity propagator
derived for an infinite disordered medium has to be modified to satisfy boundary
conditions. Using transport theory a boundary condition for the diffuse intensity
is derived. We apply this boundary condition to the intensity propagator that
was derived in the diffusion approximation. The boundary condition for the diffuse
intensity is that at the surface z = 0 there should be no diffuse intensity entering the
medium from outside. This condition is first translated into a mixed Dirichlet-von
Neumann condition on the average intensity at the boundary and then to a Dirichlet
condition at an extrapolated distance from the boundary. A new propagator is
constructed for a semi-infinite medium and for a slab geometry that satisfy the
boundary conditions. With the new propagator the diffuse intensity inside the
medium is calculated. To derive the boundary condition some results of transport
theory are introduced[35], which we will use.
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2.6.1 Transport theory

Transport theory is a macroscopic theory, where the diffuse intensity is assumed to
be a slow varying function over length scales of the order of the mean free path �.
We consider the stationary case and will give a fenomenological derivation of the
Master equation. The specific intensity is split into two parts, the isotropic intensity
I(r) (Eq. (2.8)) and the net flux F(r),

I(r, ŝ) = I(r) +
3

4π
F(r) · ŝ; with F(r) ≡

∫
4π

I(r, ŝ)̂sdΩ. (2.112)

The specific intensity in the direction ŝ is written as an isotropic part, giving the
same intensity in all directions, and the inner product of the net flux and the unit
vector ŝ times the constant 3

4π
. The constant is found by substituting the expansion

of I(r, ŝ) into the definition of F(r) and using the identity
∫
4π(F(r) · ŝ)̂sdΩ = 4π

3
F(r).

The specific intensity at a small distance ds from r in the direction ŝ, I(r + ds, ŝ),
is the specific intensity at r in the direction ŝ, I(r, ŝ), minus the intensity that is
scattered out of the direction ŝ over the distance ds, ds

�
I(r, s). The gain is the

intensity coming from all directions that is scattered into the direction ŝ over the
distance ds. Assuming isotropic scattering the gain term is,

ds

4π�

∫
4π

I(r, ŝ′)dΩ′ =
ds

�
I(r). (2.113)

Adding all contributions gives,

I(r+ ds, ŝ) = I(r, ŝ)−
ds

�
I(r, s) +

ds

�
I(r), (2.114)

the Master equation. Substituting Eq. (2.112) in the above equation and writing
the variations over the distance ds as derivatives results in,

ŝ · ∇I(r) =
−3

4π�
F(r) · ŝ−

3

4π
(̂s · ∇)(F(r) · ŝ). (2.115)

The last term can be neglected under the assumption that the diffuse intensity is
a slow varying function of position. The specific intensity thus can be expressed in
the isotropic intensity and the divergence of the isotropic intensity,

I(r, ŝ) = I(r)− �∇I(r) · ŝ. (2.116)

2.6.2 Boundary condition

The boundary condition is that there should be no diffuse intensity entering the
medium at the surface rs,∫

ŝ′z≥0
I(rs, ŝ

′)(̂s′ · n̂+)dΩ′ = Jn̂+(rs) = 0, (2.117)
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with n̂+ a unit vector perpendicular to the surface, pointing inwards, i.e. in the
positive z direction, and Jn̂+(rs) the diffuse flux on the surface propagating into the
medium. Eq. (2.116) is substituted into the above equation, where the divergence
of the isotropic intensity is decomposed into the part perpendicular to the surface
and the part tangential to the surface,

∇I(r) = (∇I(r) · n̂+)n̂+ + (∇I(r) · t̂)̂t. (2.118)

The boundary condition becomes,

∫
ŝ′z≥0

I(rs, ŝ
′)(̂s′ · n̂+)dΩ′ =

∫
ŝ′z≥0

I(rs)(̂s
′ · n̂+)dΩ′ −

�
∫
ŝ′z≥0

(∇I(rs) · n̂+)(n̂+ · ŝ
′)(̂s′ · n̂+) + (∇I(rs) · t̂)(̂t · ŝ

′)(̂s′ · n̂+)dΩ′ = 0.(2.119)

The part of the divergence of the isotropic intensity tangential to the surface does
not contribute to the second integral in Eq. (2.119). Performing the integration
gives,

πI(rs)− �
2π

3
(∇I(rs) · n̂+) = 0. (2.120)

With

∇I(rs) · n̂+ =
∂I(rs)

∂z
, (2.121)

the mixed boundary condition on the diffuse intensity is found,

I(rs) = �
2

3

∂I(rs)

∂z
. (2.122)

In line with transport theory the intensity close to the boundary is approximated
by a first order polynomial, I(z) = a+ bz, and the distance from the interface where
the diffuse intensity extrapolates to zero can be found. Substituting I(z) = a + bz

into Eq. (2.122) leads to an extrapolation length τ0 = 2�/3 for which I(−τ0) = 0.
It should be emphasized that the boundary condition is only approximate. The
transport problem discussed in this section is well known as the Milne-problem[36,
37, 16], which can be solved exactly. The exact solution of the Milne-problem leads
to an extrapolation length τ0 = 0.7104 � for the diffuse intensity. This is in the
case of no absorption in the medium and the average refractive index inside the
medium equal to the refractive index outside. Lagendijk, Vreeker and de Vries[38]
and Zhu, Pine and Weitz[39] have shown that a mismatch in refractive index leads
to reflections of the diffuse intensity at the interface, and accordingly to a different
extrapolation length. From Eqs. (2.117,2.120,2.122) the diffuse flux Jn̂−(rs) that is
emerging from the surface can be determined,

∫
ŝ′z≤0

I(rs, ŝ
′)(̂s′ · n̂−)dΩ′ = Jn̂−(rs) =

4π�

3

∂I(rs)

∂z
, (2.123)
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This equation holds only on the surface, since Eq. (2.120) was used that holds only
on the surface. In connection with the flux on the surface it is interesting to repeat
the definition of the diffuse “energy density” u(r),

u(r) =
1

vE

∫
4π

I(r, ŝ)dΩ. (2.124)

For the diffuse flux a constitutive equation holds,

J(r) = −D∇u(r); D =
vE�

3
. (2.125)

This equation results in the same flux as Eq. (2.123).

2.6.3 The intensity propagator for a semi-infinite medium

The boundary condition Eq. (2.117) or Eq. (2.122) was reformulated into a condition
on the diffuse isotropic intensity I(r), namely I(−τ0) = 0. With this new bound-
ary condition the intensity propagator for the infinite medium H(r, t) is modified
to the intensity propagator for the semi-infinite medium H(r, r′, t) that obeys the
constraint that no intensity propagates to a trapping plane positioned at z = −τ0
parallel to the surface of the medium[40]. Note that the boundary condition can
be imposed on H , since H(r) gives the isotropic intensity in r due to the specific
intensity in r = 0, but not on L, since the quantity propagated to r by L(r) is not
an isotropic intensity. Later the propagator H will be used to find an approximate
form of the propagator L for the semi-infinite medium and the slab geometry. The
propagator H for a semi-infinite medium is found by subtracting from the intensity
that propagates from r to r′ the intensity that propagates from the point r mirrored
in the trapping plane to r′.

H(r⊥, z, r
′
⊥, z

′, t) = H(r′⊥ − r⊥, z
′ − z, t)−H(r′⊥ − r⊥, z

′ + (z + 2τ0), t). (2.126)

In Fig. (2.9) the construction of H(r⊥, z, r
′
⊥, z

′, t) is shown graphically. Using the
expression Eq. (2.108) the following explicit expression for H(r⊥, z, r

′
⊥, z

′, t) is found,

H(r⊥, z, r
′
⊥, z

′, t) =
vEa

4π�(4πDt)3/2
e−t/τa ×

(
e−((r⊥−r

′
⊥)
2+(z−z′)2)/(4Dt) − e−((r⊥−r

′
⊥)
2+(−z−z′−2τ0)2)/(4Dt)

)
. (2.127)

The intensity propagator H(r⊥, z, r
′
⊥, z

′, t) satisfies the condition that the intensity
that propagates to the trapping plane is zero, H(r⊥, z, r

′
⊥,−τ0, t) = 0. We now

have to define a source of diffuse intensity based on the coherent intensity given in
Eq. (2.65). The coherent intensity inside the medium from an unit incident flux Jcoh
with direction n̂+ is the specific intensity Icoh(r, ŝ),

Icoh(r, ŝ) = e−z/� δ(̂s−n̂+)Ψinc(r⊥)Ψ∗inc(r⊥), (2.128)
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Figure 2.9: The construction of the intensity propagator H(r, r′, t) for a semi-
infinite slab. The slab boundary (the solid line) is at z = 0, the
trapping or mirror plane (the dashed line) is at z = −τ0. The
intensity propagates from r to r′. The part that is subtracted is
the part that travels from rm to r′, where rm is the mirror point of
r mirrored in the trapping plane. This construction ensures that
no intensity propagates to the trapping plane.

with Ψinc(r⊥)Ψ∗inc(r⊥) the flux distribution through a plane perpendicular to the
beam (the beam profile) of the incoming light normalized to unity. The unit source
of specific intensity is defined as,

S(r) ≡ e−z/� Ψinc(r⊥)Ψ∗inc(r⊥). (2.129)

In the special case that the absorption time τa goes to infinity the diffuse intensity in
the semi-infinite medium from a perpendicular incoming unit plane wave becomes,

I(z) =
∫

dr⊥
′dr⊥dz′dtS(r′)H(r⊥

′, z′, r⊥, z, t) =
3

4π

(
1 +

τ0
�
− e−z/�

)
. (2.130)

The flux leaving the semi-infinite medium is, according to Eq. (2.123), given by,

Jn̂−(z = 0) =
4π�

3

∂I(z)

∂z

∣∣∣∣∣
z=0

= 1, (2.131)

and the total flux is conserved.

2.7 Diffuse intensity in a slab

In the same manner as in the previous section one can find the diffuse intensity in
a disordered slab of thickness Lslab. The physical slab boundaries are at z = 0 and
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Figure 2.10: The positions of the slab boundaries and the trapping planes with
respect to the z-coordinate. The physical thickness of the slab is
Lslab, the slab begins at z = 0 and ends at z = Lslab (the solid
lines). The positions of the trapping planes (the dashed lines) is at
z = −τ0 and z = L− τ0. For later use the thickness L is defined as
L ≡ Lslab + 2τ0.

z = Lslab. The result for the diffuse intensity from the Milne-problem is extended to
the interface at z = Lslab. The boundary conditions on the diffuse intensity become
I(−τ0) = I(Lslab + τ0) = 0.

2.7.1 The intensity propagator for a slab

The intensity propagator H needs to be modified again, in such a manner that no
intensity propagates to the trapping planes at z = −τ0 and z = Lslab + τ0. In
Fig. (2.10) the positions of the slab boundaries and the trapping planes are shown
with respect to the z-coordinate. The solution is found by multiple reflection of the
diffuse intensity propagator in the trapping planes.

H(z1, z2, r⊥, t) =
vEe

−t/τ0

4π�(4πDt)3/2
×

∞∑
n=−∞

{e−(r
2
⊥+[z1−z2+2n(Lslab+2τ0)]

2)/4Dt − e−(r
2
⊥+[z1+z2+2n(Lslab+2τ0)+2τ0]

2)/4Dt}. (2.132)

This intensity propagator satisfies the boundary condition that no diffuse intensity
propagates to the trapping planes. To get the intensity propagator in a more con-
venient form some mathematical manipulations follow. The thickness L is defined
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as L ≡ Lslab + 2τ0. With the help of the Poisson summation rule this equation can
be rewritten as

H(z1, z2, r⊥, t) =
vEe

−t/τ0

32π2�DtL
e−r⊥

2/(4Dt) ×

∞∑
n=1

e−π
2n2Dt/L24 sin[πn(z1 + τ0)/L] sin[πn(z2 + τ0)/L]. (2.133)

Fourier transforming the time and the perpendicular space coordinate to frequency
ω and p⊥,

H(z1, z2,p⊥, ω) =
∫ ∞
0

dt
∫ ∞
−∞

dr⊥H(z1, z2, r⊥, t)e
iωteir⊥·p⊥ =

∫ ∞
−∞

dr⊥

[
vEe

ir⊥·p⊥

8π2�DL

∞∑
n=1

sin[πn(z1 + τ0)/L] sin[πn(z2 + τ0)/L]×

∫ ∞
0

dt
e−t(1/τ0−iω+π

2n2D/L2) e−r⊥
2/(4Dt)

t

]
. (2.134)

Performing the time integral gives[41],

∫ ∞
0

dt
e−t(1/τ0−iω+π

2n2D/L2) e−r⊥
2/(4Dt)

t
= 2K0


|r⊥|

√
1

Dτa
−

iω

D
+

π2n2

L2


 . (2.135)

with K0 the zeroth order modified Bessel function of the second kind. Now the r⊥
integral can be done,

∫ ∞
−∞

dr⊥K0


|r⊥|

√
1

Dτa
−

iω

D
+

π2n2

L2


 eir⊥·p⊥ =

∫ 2π
0

∫ ∞
0

ei|p⊥|r⊥ cos θK0


|r⊥|

√
1

Dτa
−

iω

D
+

π2n2

L2


 r⊥dr⊥dθ. (2.136)

First the integration over θ is done,∫ 2π
0

ei|p⊥|r⊥ cos θdθ = 2πJ0(|p⊥|r⊥), (2.137)

with J0 the zeroth order Bessel function of the first kind. The result of the space
integral is[42],

∫ ∞
0

2πr⊥J0(|p⊥|r⊥)K0


r⊥

√
1

Dτa
−

iω

D
+

π2n2

L2


 dr⊥ =

2π

p⊥2 + 1
Dτa
− iω

D
+ π2n2

L2

.

(2.138)
The intermediate result is

H(z1, z2,p⊥, ω) =
vE

2π�DL

∞∑
n=1

sin[πn(z1 + τ0)/L]×

sin[πn(z2 + τ0)/L]
1

p⊥2 + 1
Dτa
− iω

D
+ π2n2

L2

. (2.139)
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The summation can be written in closed form[43], with as final result,

H(z1, z2,p⊥, ω) =
vE

4π�D Q

sinh [(z< + τ0) Q] sinh [(L− z> − τ0) Q]

sinh [L Q]

with Q =
(
p⊥
2 +

1

Dτa
−

iω

D

)1/2
, (2.140)

and z< ≡ min|z1, z2|, z> ≡ max|z1, z2|. Eq. (2.140) is an important formula,
H(z1, z2,p⊥, ω) is the solution of (the Fourier transform of) the time and space
dependent intensity propagator.

2.7.2 Diffuse intensity inside the slab

With the expression Eq. (2.140) for the intensity propagator inside the slab the time
dependence and space dependence of the average intensity I(r) can be calculated.

I(r⊥, z, t) =
1

(2π)3
×

∫
S(r⊥

′, z′, t′)H(z′, z,p⊥, ω)e−i(r⊥−r⊥
′)p⊥e−iω(t−t

′)dωdp⊥dr⊥
′dz′dt′. (2.141)

Using the source in Eq. (2.129) and integrating out the time dependence and the
dependence on the transversal coordinate r⊥, and τa → ∞ (i.e. in the absence of
absorption) this results in the diffuse intensity inside the slab for an exponential
decaying source,

I(z) ≈
3

4π�L

(
(� + τ0)(L− z − τ0)− �Le−z/�

)
. (2.142)

where a term of the order e−L/� was neglected.

2.7.3 Injection source

We will follow Akkermans et al.[44] to simplify future calculations and make the
approximation that all diffuse intensity is generated at an injection depth zi with
respect to the physical boundary of the slab. The injection source Sinj(r) is defined
by the average and the weight of the source in Eq. (2.129), respectively,

S(r) =
∫
z≥0

S(r)dz = �Ψinc(r⊥)Ψ∗inc(r⊥),

zS(r) =
∫
z≥0

zS(r)dr = �2Ψinc(r⊥)Ψ∗inc(r⊥). (2.143)

The source becomes,

Sinj(r) ≡ S(r)δ(z−zi) = �δ(z− �)Ψinc(r⊥)Ψ∗inc(r⊥) with zi =
zS(r)

S(r)
= �. (2.144)
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Figure 2.11: The diffuse intensity I(z) in a slab of ten mean free paths, Lslab =
10�, as a function of depth. The depth is expressed in mean free
paths �. The solid line is the intensity with an exponential de-
caying incoming beam in Eq. (2.142), the dashed line is the inten-
sity with an injection of the incoming source at a mean free path
in Eq. (2.145), both with respect to the left y-axis. The dashed-
dotted line shows the intensity I(z) in Eq. (2.150) with respect to
the right y-axis. The dotted vertical lines denote the physical slab
boundaries.

The injection depth zi is equal to the average depth � at which the diffuse intensity
is generated. The injection source gives an exact result if the intensity propagator
depends linearly on the z coordinate. The diffuse intensity Iinj(z) for the source in
Eq. (2.144) is,

Iinj(z) =
∫

Sinj(r
′)H(r⊥

′, z′, r⊥, z)dr′dr⊥ =




3

4π�L
(z + τ0)(L− �− τ0) z ≤ �

3

4π�L
(� + τ0)(L− z − τ0) z ≥ �

(2.145)
Fig. (2.11) shows the intensity inside the slab for both sources. As can be seen from
the figure the slope on the slab boundaries is equal for both sources. The total
reflection and transmission are determined by using Eq. (2.123) on the transmission



2.8. Transmission and reflection using outgoing amplitude propagators 35

and reflection side,

R =
4π�

3

∂I(z)

∂z

∣∣∣∣∣
z=0

= 1−
� + τ0
L

; T = −
4π�

3

∂I(z)

∂z

∣∣∣∣∣
z=L−2τ0

=
� + τ0
L

, (2.146)

and the total flux is conserved. The same reflection and transmission are obtained
by taking the isotropic intensity at an ejection depth ze.

R = πIinj(ze) (ze =
2

3
�) T = πIinj(ze) (ze = L− 2τ0 −

2

3
�). (2.147)

2.8 Transmission and reflection using outgoing am-

plitude propagators

We want to derive a simpler formalism to calculate the transmission and reflection.
In the previous section the reflection and transmission were derived by taking the
derivative of the isotropic intensity at the boundary (Eq. (2.123)). Here we want
to calculate the transmission and reflection by using propagators that propagate
the intensity from within the medium to the outside. In principle the angular
resolved transmission and reflection can be determined this way. Unfortunately,
we cannot attach outgoing Green’s functions to the propagator H , since it already
ends on Green’s functions (see Fig. (2.8)). Outward propagating amplitudes can be
attached to the vertex L, since it starts and ends on a scatterer (see Fig. (2.7)).
However the exact form of the vertex L for the semi-infinite medium or the slab
geometry is not known, since the boundary condition Eq. (2.117) was derived for
the diffuse intensity (i.e. a propagator ending on Green’s functions) and thus applies
only to H and not to L. An approximate form of the bare vertex L in the semi-
infinite or the slab geometry can be inferred by noticing that for the infinite medium
L = 16π2

�
H + 4π

�
δ(r) (See Eq. (2.106) and Eq. (2.108), neglecting absorption and the

time dependence). For the slab geometry we approximate the bare vertex L by
multiplying the propagator H for the slab by 16π2

�
and adding the single scattering

contribution 4π
�
δ(r)δ(t),

L(r⊥, z, r⊥
′, z′, t) ≈

16π2

�
H(r⊥, z, r⊥

′, z′, t) +
4π

�
δ(r−r′)δ(t). (2.148)

2.8.1 The “intensity” I(r)

We introduce the “intensity” I(r), which is defined as a source connected to L,
i.e. the “intensity on a scatterer” with the dimensions of a source, unit power per
volume.

I(r) =
∫ L

0
〈Ψinc(r

′)〉〈Ψ∗inc(r
′)〉L(r′, r)dr′. (2.149)

Later the total transmission and reflection will be derived by connecting outgoing
propagators to the source I(r). First the “intensity on a scatterer” I(r) is calculated.
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With the incoming unit intensity 〈Ψinc(r)〉〈Ψ∗inc(r)〉 = e−z/� Ψinc(r⊥)Ψ∗inc(r⊥) from
Eq. (2.65), the intensity I(z) in the slab geometry is given by,

I(z) =
∫
I(r)dr⊥ ≈

12π

�2L
(� + τ0)(L− z − τ0)−

8π

�
e−z/�. (2.150)

In the limit L → ∞ Eq. (2.150) reduces to the intensity I(z) for a semi-infinite
medium,

I(z) ≈
12π

�2
(� + τ0)−

8π

�
e−z/�. (2.151)

In Fig. (2.11), Eq. (2.150) is shown graphically in comparison with the intensities
I(z) in Eq. (2.142) and Eq. (2.145). The integral in Eq. (2.149) was taken from 0 to
∞, which for slabs thicker than five mean free paths gives a completely negligible
extra contribution to Eq. (2.150). To transport the intensity outside the medium,
outgoing propagators G(r, r′) are attached to the “intensity” I. The outgoing prop-
agator is defined by,

Gout(r⊥, z, r⊥
′, z′) ≡ Gout(r⊥

′−r⊥, z, z
′) =

e−iKz/ cos θ+ik0z
′/ cos θ

4π|r−r′|
, (2.152)

with r inside (z > 0) and r′ outside (z′ < 0) the medium, θ the angle of the
outgoing direction ŝ with the normal to the surface pointing outward, n̂, and k0
the wave vector outside the medium, for convenience the vacuum, k0 = E/c. The
specific intensity through a plane at z′ outside the medium, I(z′, ŝ) is,

I(z′, ŝ) =
∫

I(r′, ŝ)dr⊥
′ =

∫
z≥0
I(r)Gout(r⊥

′−r⊥, z, z
′)G∗out(r⊥

′−r⊥, z, z
′)dr⊥dz.

(2.153)
The integration over r⊥

′ in the last integral cancels against the condition that r′−r
is pointing in the direction ŝ. The flux J(z′) through a surface at z′ far away from
and parallel to the surface of the medium is,

J(z′) =
∫
ŝz≤0

I(z′, ŝ)(̂s·n̂)dΩ with (̂s·n̂) = cos θ = µ. (2.154)

The fraction of the intensity I(z) at depth z contributing to the total flux in reflec-
tion is given by,∫

Gout(r⊥
′−r⊥, z, z

′)G∗out(r⊥
′−r⊥, z, z

′) cos θd(r⊥
′−r⊥) =

∫ ∞
∞

ez/(� cos θ) cos θ

(4πr)2
dr⊥ =

1

8π

∫ 1
0
e−z/(�µ)dµ =

1

8π
E2(z/�), (2.155)

with E2(z) the exponential integral of second order. The same calculation can be
done to find the total flux in transmission, resulting in a convolution of the intensity
I(z) with E2((L− 2τ0 − z)/�). The total flux in reflection and transmission for the
slab geometry, JR and JT , are given by respectively,

JR =
1

8π

∫ ∞
0
I(z)E2(z/�)dz =

3(� + τ0)(L− τ0 −
2
3
�)

4�L
− (1− ln 2), (2.156)
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and

JT =
1

8π

∫ L−2τ0

−∞
I(z)E2((L− 2τ0 − z)/�)dz =

3(� + τ0)(τ0 + 2
3
�)

4�L
. (2.157)

The sum of the reflection and transmission is,

JR + JT ≈ 0.95 (2.158)

Strictly speaking the integral boundaries for reflection and transmission in the slab
geometry are at respectively L − 2τ0 and 0, but for slabs thicker than five mean
free paths the extension of the integral boundaries to infinity respectively minus
infinity gives a contribution that is completely negligible. A more serious error is
introduced by the approximate form of the bare vertex L in the semi-infinite or slab
geometry. The total flux is not conserved. However the transmission is the same as
derived in Eq. (2.146) for τ0 = 2

3
�. Clearly the reflection is underestimated, which

means that the approximate form of the bare vertex L in Eq. (2.148) leads to an
underestimating of the intensity I at the entrance interface. This is apparently the
price we have to pay for an easier formalism.

2.8.2 Ejection drain

The convolution of the exponential integral of second order with the “intensity on
a scatterer” I(r) is not yet a simple formalism. The last step is to assume that
all ejected intensity comes from the same depth. In the same way as the injection
source in Eq. (2.144) for the incoming intensity was defined, an ejection drain Ed is
defined, based on the average and the weight of the ejection function in Eq. (2.155),

E =
1

8π

∫
z≥0

E2(z/�)dz =
�

16π
; zE =

1

8π

∫
z≥0

zE2(z/�)dz =
�2

24π
. (2.159)

With this average and weight of the ejection function the ejection drain is defined
as,

Ed(z) =
�

16π
δ(z−ze) ze =

2

3
�. (2.160)

The average ejection depth for diffuse light in reflection is ze = 2
3
�. The analog

argument for the transmission side of the slab leads to the ejection drain,

Ed(z) =
�

16π
δ(z−ze) ze = L−2τ0−

2

3
�. (2.161)

The average ejection depth for diffuse light in transmission is ze = L−2τ0−
2
3
�.

These ejection drains are exact for a linear intensity distribution I(r) near the slab
boundaries. We make one more approximation to the Ladder vertex L by neglecting
the single scattering term in Eq. (2.148),

L(r⊥1, z1, r⊥2, z2, t) ≈
16π2

�
H(r⊥1, z1, r⊥2, z2, t). (2.162)
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We now have arrived at simple formulas to get the intensity I inside the slab, the
total transmission and the total reflection. We use the injection source in Eq. (2.144)
and the propagator in Eq. (2.162). The intensity I is then given by,

I(z) = �
∫

L(r⊥
′, zi, r⊥, z, t)Ψinc(r⊥

′)Ψ∗inc(r⊥
′)dr⊥

′dr⊥dt

I(z) =




12π

�2L
(z + τ0)(L− �− τ0) z ≤ �

12π

�2L
(� + τ0)(L− z − τ0) z ≥ �

(2.163)

With the ejection drains for reflection (Eq. (2.160)) and transmission (Eq. (2.161))
this leads to,

JR =
L− �− τ0

L
JT =

� + τ0
L

. (2.164)

As could be expected the flux in transmission for the ejection drain is equal to the
transmission found in Eq. (2.157), since the intensity I(r) near the transmission
interface is a linear function. Compared to the exact reflection in Eq. (2.156) the
ejection drain overestimates the reflection, effectively cancelling the error in the
approximation made in the bare vertex L.

2.8.3 Conclusions

The injection source Eq. (2.144) and the ejection drains effectively are good ap-
proximations to find the reflection and transmission of disordered media from the
intensity I(r). Recently Durian[45] found the transmission to be,

JT =
� + τ0

Lslab + 2τ0
=

� + τ0
L

, (2.165)

based on numerical simulations of diffusing particles, with a value of the trapping
plane τ0 ≈

2
3
�. This numerical result is equal to the calculated total transmission in

Eq. (2.146), Eq. (2.157) and Eq. (2.164). Since the approximations work extremely
well, throughout this thesis we will use that all diffuse intensity is generated at
an injection depth zi with the source function in Eq. (2.144), and all reflected or
transmitted intensity is emitted at an ejection depth ze with the ejection drain of
Eq. (2.160) or Eq. (2.161), and we use the bare vertex L for a slab in Eq. (2.162).
One can include internal reflection at the slab boundaries because of a mismatch in
refractive index by adapting the extrapolation length τ0, as has been shown by Zhu,
Pine and Weitz[39].



39

Chapter 3

Correlations on the transmission

In this chapter we will treat the theory that describes the experiments to be pre-
sented in chapter 4. We are interested in the fluctuations on the transmission and
reflection of light multiply scattered by a disordered medium. In the previous chapter
the average reflection and transmission were calculated. To describe the fluctuations
we need to calculate higher moments of the intensity. For the higher moments in-
terference plays an important role. The effects of interference will be calculated in
the diagrammatic approach introduced in chapter 2. We will first describe the fluc-
tuations of light reflected from a perfectly reflecting rough surface. We obtain the
distribution of the fluctuations and the angular correlation in laser speckle. These
results give us insight in the reflection and transmission of a waveguide with disor-
der, a concept that will prove to be very useful in the explanation of the fluctuations
on the total transmission of light through a disordered medium. Then we come to
the angular and frequency dependent short-range correlations in the fluctuations
of the transmission. The theoretical results for the short-range correlation will be
used in chapter 4 to determine the diffusion constant from the measured frequency
dependent short-range correlation. In this chapter the theoretical short-range corre-
lation is used to calculate the long-range correlation in the fluctuations of the total
transmission as a function of angle and frequency in the Langevin approach. In
chapter 4 the measurement of the long-range correlation will be presented, the first
experimental confirmation of the full long-range correlation function on the total
transmission. The theory will provide a very good description of the experimental
results. In Appendix A it will be shown that the result of the Langevin approach
coincides completely with the results of a full diagrammatic technique.

3.1 Laser speckle

A well known phenomenon in laser light is the strong angular fluctuation in light
reflected from a rough, reflecting object[46]. It is caused by interference of the
waves scattered from different points of the rough surface. For a continuous-wave
laser beam and a quenched surface roughness the angular fluctuating pattern is
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Figure 3.1: Typical experimental speckle pattern of light multiple scattered by
a disordered medium observed in transmission as a function of ro-
tation angle of the sample or frequency (wavelength) of the light.

static in time. In Fig. (3.1) a typical experimental speckle pattern is shown. In
this section we will first calculate the distribution of the fluctuations in the intensity
pattern of Fig. (3.1). Then we will calculate the angular correlation in the static
speckle pattern. The result for the angular correlation in the speckle pattern from
a perfectly reflecting rough surface is extended to the angular correlation in the
speckle pattern in transmission and reflection generated by the scattered light from
a disordered sample. The angular correlation in the laser speckle is used to define
the number of modes N , in analogy with the number of modes supported by a
waveguide.

3.1.1 Speckle distribution

The total amplitude in a point of observation far away from the surface is the
vectorial sum of amplitudes coming from the whole rough surface, each with its own
phase factor. It is assumed that the perfect reflection by the rough surface scrambles
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the phase and the direction of the reflected waves completely. The total amplitude
for each polarization direction in a point of observation has a Gaussian distribution
in a two dimensional complex plane. The total amplitude can be viewed as making
a random walk in this complex plane as a function of the point of observation. The
normalized probability distribution of the length of the total amplitude A is given
by,

P (|A|) =
2|A|

α
e−|A|

2/α, (3.1)

with α an arbitrary constant describing the width of the distribution of the total
amplitude. The average intensity for each polarization direction 〈I〉 that is observed
in a certain direction is given by,

〈I〉 = 〈|A|2〉 =
∫ ∞
0

dA|A|2P (|A|) = α. (3.2)

Since we are interested in the intensity distribution, the amplitude distribution has
to be rewritten in an intensity distribution, P (I), with I = |A|2.

P (I) =
∫ ∞
0

dA
2|A|

〈|A|2〉
e−|A|

2/〈|A|2〉δ(|A|2 − I). (3.3)

The δ-function is rewritten as,

δ(|A|2 − I) =
1

2|A|
δ(|A| −

√
I). (3.4)

The probability distribution of the intensity in each of the two independent polar-
ization directions becomes,

P (I) =
1

〈I〉
e−I/〈I〉. (3.5)

This is the well known Rayleigh distribution of laser speckle. It is a negative expo-
nential distribution, implying the highest probability to measure zero intensity. The
large fluctuations in the speckle are characterised by a variance equal to the mean
squared,

〈I2〉 − 〈I〉2 = 〈I〉2. (3.6)

In Fig. (3.2) the experimental distribution of the fluctuations in a speckle pattern
is shown, together with the theory in Eq. (3.5), as measured in the short-range
correlation measurements to be presented in chapter 4. The Rayleigh distribution
describes the strong fluctuations in the laser speckle shown in Fig. (3.1).

3.1.2 Angular correlation in static laser speckle

We are interested in the angular correlation in the static laser speckle, i.e. over
what solid angle is the scattered intensity in a certain direction correlated. This
problem is closely related to the Van Cittert-Zernike theorem[28]. For a comprehen-
sive treatment of the size of a speckle see also Goodman[47]. It will be shown that
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Figure 3.2: Experimental intensity distribution of a typical speckle pattern.
Typical data of the short-range correlation measurements in trans-
mission through a disordered medium of chapter 4 was used. Dots:
Experimental distribution. Solid line: Theoretical distribution as
given in Eq. (3.5). The x-axis is scaled to the average intensity of
the speckle pattern.

the angular correlation in the speckle pattern is solely determined by the size and
shape of the beam falling on the rough surface. We assume the observation of one
polarization channel. The quantity JA(p̂1, p̂2) is defined as the amplitude per unit
solid angle reflected in direction p̂1 times the complex conjugate amplitude per unit
solid angle reflected in direction p̂2,

JA(p̂1, p̂2) ≡ A(p̂1)A
∗(p̂2), (3.7)

with the length of the vector |p̂| = k0 = 2π/λ. The angular speckle correlation
function CS(p̂1, p̂2) is defined as,

CS(p̂1, p̂2) ≡
〈I(p̂1)I(p̂2)〉 − 〈I(p̂1)〉〈I(p̂2)〉

〈I(p̂1)〉〈I(p̂2)〉
≈
|〈JA(p̂1, p̂2)〉|2

〈I(p̂1)〉〈I(p̂2)〉
, (3.8)

where I(p̂) is the flux per unit solid angle in the direction p̂. For the last equation
sign in Eq. (3.8) we have factorized the average of four amplitudes in the product
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of the average of two amplitudes,

〈A(p̂1)A
∗(p̂1)A(p̂2)A

∗(p̂2)〉 ≈

〈A(p̂1)A
∗(p̂1)〉〈A(p̂2)A

∗(p̂2)〉+ 〈A(p̂1)A
∗(p̂2)〉〈A(p̂2)A

∗(p̂1)〉. (3.9)

The angular brackets denote averaging over different configurations of the surface
roughness. The amplitude A(p̂) is given by,

A(p̂) =
∫

A(r⊥)eip̂⊥·r⊥dr⊥, (3.10)

with A(r⊥) the amplitude and phase of the reflected wave on the rough surface
(the “source” of the reflected waves). The field A(r⊥) is split in an amplitude and
a phase part, A(r⊥) = |A(r⊥)|eiφ(r⊥). We assume that the phase is an extremely
strong fluctuating function of position (i.e. the surface is extremely rough), such
that φ(r⊥) has a white noise distribution,

〈A(r⊥1)A(r⊥2)〉 = 〈I(r⊥1)〉δ(r⊥1−r⊥2) (3.11)

With this assumption the quantity 〈JA(p̂1, p̂2)〉 becomes,

〈JA(p̂1, p̂2)〉 =
∫
〈I(r⊥)〉eir⊥(p̂⊥1−̂p⊥2)dr⊥. (3.12)

Introducing the difference between p̂1 and p̂2 as ∆p = p̂2 − p̂1 and substituting
p̂1 → p̂, one obtains,

〈JA(p̂, p̂+ ∆p)〉 =
∫
〈I(r⊥)〉e−i∆p⊥r⊥dr⊥; 〈I(p̂)〉 = JA(p̂, p̂). (3.13)

From the above equation we see that the speckle correlation function Eq. (3.8) is
determined by the Fourier transform of the spot on the rough surface,

CS(∆p⊥) =

∣∣∣∣
∫
〈I(r⊥)〉e−i∆p⊥r⊥dr⊥

∣∣∣∣2∣∣∣∣
∫
〈I(r⊥)〉dr⊥

∣∣∣∣2
. (3.14)

Eq. (3.14) describes over what angular direction the speckle is correlated, i.e. the
average angular width of a speckle. The width of a speckle depends only on the size
and shape of the source, which is determined by the incoming beam.

3.1.3 The number of independent speckle spots

We will determine the number of independent speckle spots in reflection. The speckle
correlation function in Eq. (3.14) gives the angular size of a speckle. The area of one
speckle spot in p̂-space is given by the integral over the speckle correlation function
CS(∆p⊥),

S =
∫

CS(∆p⊥)d∆p⊥. (3.15)
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The total available area in p̂⊥-space (the area that is integrated over) is πk20. The
number of independent speckle spots N is the total area of the p̂⊥-space divided
by the area of one speckle spot S. An extra factor of 2 is introduced to take the
vector character of the light into account in this scalar theory. The vector character
effectively doubles the number of independent speckle spots because of the two
independent polarization directions.

N =
2πk20
S

. (3.16)

As an example we will give the number of independent speckle spots for a Gaussian
spot. For a Gaussian spot the amplitude is given by,

|A(r⊥)| =

√
2

ρ0
√
π
er⊥

2/ρ20 , (3.17)

and the resulting number of independent speckle spots is given by,

N =
2π2ρ20
λ2

. (3.18)

We have obtained the intensity distribution and the angular correlation in the laser
speckle reflected from a rough surface. The angular correlation was used to define the
total number of independent speckle spots. The argument above is not completely
correct. Energy conservation of the total reflected intensity correlates the intensity
in independent speckle spots[48]. However we will use the above obtained results for
a disordered slab, where energy conservation in the total reflection does not apply.

The number of independent speckle spots in transmission or reflection of laser
light scattered by a disordered medium with L  � can be calculated in a similar
way. We saw that for the reflection from a rough surface the number of independent
speckle spots depended only on the size and shape of the laser spot on the rough
surface. We state that the size of the speckle spots generated by a disordered medium
does only depend on the intensity distribution of the scattered light at the exit
interface of the sample. In reality the light emerges from a layer of approximately a
mean free path thick, but this is approximated by a plane at the ejection depth (z =
ze). Important difference with the rough surface is that in a disordered medium the
incoming beam is broadened by diffuse propagation in the disordered medium[49].
The intensity distribution on the exit interface is calculated directly in p-space, using
the Ladder propagator of the previous chapter. Iin(p⊥) is the Fourier transform of
the incoming beam at the injection depth. L(zi, ze,p⊥, ω = 0) gives the diffuse
broadening of the incoming beam. 〈Iout(p⊥)〉 is defined as the Fourier transform
of the intensity profile on the exit interface at the ejection depth. The Fourier
transform of the intensity profile on the exit interface 〈Iout(p⊥)〉 and the speckle
correlation function CS(∆p⊥) are given by,

〈Iout(p⊥)〉 =
�2

16π
Iin(p⊥)L(zi, ze,p⊥, ω = 0); CS(∆p⊥) =

|〈Iout(∆p⊥)〉|2

|〈Iout(0)〉|2
.

(3.19)
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Figure 3.3: The diffuse broadening of the incoming beam by the disordered
medium in transmission. Dashed line: Gaussian intensity profile of
the incoming beam Eq. (3.17) with ρ0 = 27µm. Solid line: Calcu-
lated intensity profile at the exit interface (z = ze) of a disordered
sample of thickness L = 45µm, � = 750nm and τ0 = 2/3�, by
transforming Iout(p⊥) in Eq. (3.19) to real space. The top of both
curves is scaled to unity. The transverse coordinate r⊥ is scaled to
the thickness L of the sample.

For the Gaussian incoming beam in Eq. (3.17) the area in p⊥-space of one speckle
spot in transmission (ze = L− 2τ0 −

2
3
�) is,

S =
∫ ∞
0

2πp⊥

(
L sinh[(zi + τ0)p⊥] sinh[(L− ze − τ0)p⊥]

(zi + τ0)(L− ze − τ0)p⊥ sinh[Lp⊥]

)2
e−p⊥

2ρ20/4dp⊥. (3.20)

The number of independent speckle spots N in transmission is N = 2πk20/S. The
number of independent speckle spots in reflection is found by taking ze = 2

3
�, which

for reasonable parameters (ρ0, L  �) results in a number of modes slightly larger
than for the random surface. The distribution of the intensity within one speckle
spot and one polarisation direction is given by the Rayleigh distribution in Eq. (3.5).
The number of independent speckle spots is an important parameter. In the next
section we will discuss a waveguide with disorder. A discrete number of modes is
supported by a waveguide. We will interpret the number of independent speckle
spots as the number of modes supported by a waveguide.
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Figure 3.4: Waveguide with disorder. The number of modes of the waveguide

is N =
2πA

λ2
.

3.2 Waveguide with disorder

We introduce a waveguide with disorder as a simple model to understand the multi-
ple scattering regime. The waveguide is assumed to be ideal (i.e. perfectly reflecting
walls), supporting discrete modes. In the middle the waveguide is filled with scat-
terers (see Fig. (3.4)). The disorder couples all ingoing modes to all outgoing modes
in a random manner. Based on conservation of energy it will be shown that the
modes in transmission and reflection have to be correlated. This argument was first
used by Lee[50] to give a heuristic derivation of the Universal Conductance Fluctu-
ations. The diameter of the waveguide determines the number of modes N that is
supported,

N =
2πA

λ2
, (3.21)

with λ the wavelength of the light and A the area of the cross section of the waveg-
uide. The discrete modes can be labelled as pa⊥ and pb⊥ for respectively the in-
coming and outgoing mode, where p⊥ denotes the perpendicular component of the
wave vector. The fraction of the intensity in incoming mode a that is coupled to
outgoing mode b, Tab, is determined by the realisation of the disorder. The average
intensity that is scattered from mode a into mode b, 〈Tab〉, is given by,

〈Tab〉 ≈
�

NL
, (3.22)

(See Eq. (2.146), Eq. (2.157) or Eq. (2.164) and divide by the number of modes).
Although it will not be used in this section, we introduce the conductance g of the
waveguide (or a disordered sample). The conductance is defined as the sum of the
transmission coefficients over all incoming and all outgoing modes,

g ≡
∑
a,b

〈Tab〉 ≈
N�

L
. (3.23)



3.2. Waveguide with disorder 47

In analogy with the intensity distribution within one speckle spot, Tab follows the
Rayleigh distribution Eq. (3.5). The variance in the transmission is,

〈δT 2ab〉 = 〈(Tab − 〈Tab〉)
2〉 ≈ 〈Tab〉

2, (3.24)

Assume for the time being that all outgoing modes are independent, then the total
transmission 〈Ta〉 is the transmission 〈Tab〉 summed over all outgoing modes,

〈Ta〉 =
∑
b

〈Tab〉 ≈
�

L
. (3.25)

Using energy conservation Ra+Ta = 1 the average total reflection is (cf. Eq. (2.146)),

〈Ra〉 ≈
L− �

L
, (3.26)

and the average reflection from mode a to mode a′ is

〈Raa′〉 ≈
L− �

NL
. (3.27)

The coefficients Raa′ follow also the Rayleigh distribution and the variance in the
reflection is,

〈δR2aa′〉 ≈ 〈Raa′〉
2 =

(
L− �

NL

)2
. (3.28)

Now it will be shown that the assumption of independent modes in transmission and
reflection cannot be correct. Let us calculate the variance on the total transmission
and the total reflection. For the variance on the total transmission we find,

〈δT 2a 〉 = 〈T 2a 〉 − 〈Ta〉
2 = 〈

∑
b

Tab
∑
b′

Tab′〉 − 〈
∑
b

Tab〉
2 =

N(N − 1)〈Tab〉
2
b�=b′ + N〈T 2ab〉b=b′ −N2〈Tab〉

2 = N〈Tab〉
2 =

�2

NL2
, (3.29)

where the assumption of independent modes is used. For the reflection we find,

〈δR2a〉 = 〈R2a〉 − 〈Ra〉
2 = 〈

∑
a′

Raa′
∑
a′′

Raa′′〉 − 〈
∑
a′

Raa′〉
2 =

N(N − 1)〈Raa′〉
2
a′ �=a′′ + N〈R2aa′〉a′=a′′ −N2〈Raa′〉

2 =

N〈Raa′〉
2 =

(L− �)2

NL2
≈

1

N
. (3.30)

Energy conservation demands that the absolute fluctuations on the total transmis-
sion and total reflection are equal. As can be seen from Eqs. (3.29) and (3.30) this
is not the case! The assumption of independent modes is not correct and somehow
the transmission and the reflection coefficients become correlated. Measuring this
correlation was the motivation for the experiments in chapter 4.
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3.3 Correlation on the transmission

In this section we will start with an overview of the theory on correlations in the
transmission of multiple scattered light by Shapiro[51], Stephen and Cwilich[52],
Mello[53] and Feng et al.[8]. After this overview the theory of the short-range cor-
relation and the long-range correlation are presented in detail. The subsection on
the long-range correlation is the most important one. There we follow closely the
article by Pnini and Shapiro[54], and extend their approach to incorporate experi-
mental conditions that were crucial in the explanation of the experimental data to
be presented in chapter 4. Finally, in appendix A, it is shown that a diagrammatic
approach based on Nieuwenhuizen and van Rossum[55] gives a result that is exactly
equal to the Langevin approach, introduced by Spivak and Zyuzin[56] and used by
Pnini and Shapiro[54].

3.3.1 Three type of correlation on the transmission

As shown in section 3.2 the transmission coefficients of a waveguide with disorder
or equivalently a disordered sample are correlated. Feng et al.[8] showed that one
can distinguish three different type of correlations in the transmission,

Caba′b′ ≡ 〈δTabδTa′b′〉 = C1 + C2 + C3, (3.31)

each one of smaller magnitude. The first term, C1, is of order unity. The second
term, C2, is of order g−1, the last term, C3, is of order g−2, with g the conductance.
The C3 term is the optical analog of the Universal Conductance Fluctuations (UCF)
observed in electronic systems[1, 2]. In the paper of Feng et al. the three type of
angular correlations were defined as,

C
(1)
aba′b′ ≡ D1〈Tab〉〈Ta′b′〉δ∆p⊥a,∆p⊥bF1(∆p⊥aL),

C
(2)
aba′b′ ≡ D2g

−1〈Tab〉〈Ta′b′〉[F2(∆p⊥aL) + F2(∆p⊥bL)],

C
(3)
aba′b′ ≡ D3g

−2〈Tab〉〈Ta′b′〉, (3.32)

where the D’s are constants of order unity and where F1 and F2 are form functions.
The indices a and b label incoming respectively outgoing directions (modes) of the
light with transverse wave vector p⊥a and p⊥b respectively. The C1-part is of order
1 if a = a′ and b = b′, decays exponentially with increasing ∆p⊥ ≡ p⊥a − p⊥a′ =
p⊥b − p⊥b′ (“memory effect”), and is zero if ∆p⊥a �= ∆p⊥b. The C2-part is of the
order g−1 if either ∆p⊥a or ∆p⊥b = 0, and shows power-law decay with increasing
∆p⊥. Finally the C3-part is of the order g−2 and does not depend on either ∆p⊥a
or ∆p⊥b.

Each correlation function requires its own experimental set-up to be measured.
The three experimental set-up’s are shown in Fig. (3.5). The short-range correlation
C1 is measured in a one-mode-in-one-mode-out configuration. A laser beam falls on
the sample. In transmission the detector is at a fixed position. The fluctuations are
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Figure 3.5: The tree types of measurements of the correlation Caba′b′ .

measured as a function of the angle of rotation of the sample. In this configuration
the requirement δ∆p⊥a,∆p⊥b is met. A typical fluctuating intensity pattern recorded
in this experimental set-up is shown in Fig. (3.1).

The long-range correlation C2 is measured in a one-mode-in-all-modes-out or
all-modes-in-one-mode-out configuration. We will concentrate on the first config-
uration. The integrating sphere in Fig. (3.5 b) collects all the transmitted light.
A detector in a porthole of the integrating sphere detects the intensity inside the
integrating sphere, which is proportional to the total transmitted intensity. The
fluctuating pattern is measured as a function of the angle of rotation of the sample.
Since the total transmission is the sum of many independent speckle spots, the fluc-
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tuations are much smaller than in the first experimental set-up, as can be seen in
Fig. (4.2), and will be shown to have long-range correlation.

The last type of correlation, C3, or the optical analog of the universal conduc-
tance correlation is measured in an all-modes-in-all-modes-out configuration. An
integrating sphere scrambles the incoming direction of the laser light completely.
In transmission the light is collected in an integrating sphere. The fluctuations
should be recorded as a function of different sample-realizations (which is extremely
impractical).

The same types of correlation: short-range, long-range, and ‘infinite-range’
(UCF) respectively, will show in the corresponding three components of the two-
frequency correlator 〈δTab(ω)δTab(ω

′)〉 when not the angle but the frequency of the
light is varied. The experimental configurations to measure the fluctuations are
the same, but now instead of rotating the sample, the fluctuations are recorded
as a function of wavelength (the frequency ω) of the incoming light. From an
experimental point of view this is more convenient, since the spot of the laser beam
on the sample varies when the sample is rotated. We will now turn to a detailed
description of the short-range and the long-range correlation.

3.3.2 The short-range correlation C1

The property that is calculated is the correlation in the second moment of the
transmitted intensity as a function of incoming and outgoing angle of the light and
as a function of frequency. A coherent laser beam falling on a disordered sample
generates a speckle pattern in transmission. When the angle of incidence or the
wavelength (the frequency) of the light is changed, the speckle pattern will change.
We are interested in how much correlation exists in the speckle patterns as a function
of the change in the angle of incidence or the wavelength (the frequency) of the light.
The correlation is defined as,

Caba′b′(ω, ω
′) ≡

〈Tab(ω)Ta′b′(ω
′)〉 − 〈Tab(ω)〉2

〈Tab(ω)〉2
. (3.33)

The average transmission from mode a to mode b, 〈Tab〉, is given by,

〈Tab〉 =
�2

16π

∫
· ·
∫

dr⊥1 · ·dr⊥4dt e
−ip⊥br⊥1eip⊥br⊥2

L(r⊥1, r⊥2, z1e, z2e; r⊥3, r⊥4, z3i, z4i, t)〉e
ip⊥ar⊥3e−ip⊥ar⊥4 , (3.34)

with L(r1, r2; r3, r4, t) = δ(r1−r2)δ(r3−r4)L(r1, r3, t) the bare intensity propagator,
and where the injection depth in Eq. (2.144) and the ejection depth in Eq. (2.161)
were used. In this calculation we take an incident plane wave. As can be shown
the short-range correlation function does not depend on the beam profile[57].The
relative phases of the incoming and outgoing plane waves is explained in Fig. (3.6).
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Figure 3.6: Incoming and outgoing directions of the waves scattered by the
disordered slab. The dashed lines denote the equal phase front of
the waves. The incoming field in the direction pa has a relative
phase of ep⊥ar⊥i at the injection depth zi. The outgoing field in
the direction pb has a relative phase of e−p⊥br⊥e when observed far
away from the slab.

The intensity correlator 〈Tab(ω)Ta′b′(ω
′)〉 is given by,

〈Tab(ω)Ta′b′(ω
′)〉 =

�4

(16π)2

∫
· · ·

∫
dr⊥1 · · ·dr⊥8 ×

exp[−ip⊥br⊥1 + ip⊥br⊥2 − ip⊥
′
br⊥3 + ip⊥

′
br⊥4]×

〈K(ω, ω′, r⊥1, · · · , r⊥4, z1e, · · · , z4e; r⊥5, · · · , r⊥8, z5i, · · · , z8i)〉 ×

exp[ip⊥ar⊥5 − ip⊥ar⊥6 + ip⊥
′
ar⊥7 − ip⊥

′
ar⊥8]. (3.35)

The eight-point vertex 〈K〉 contains all possible four amplitude diagrams. Feng et
al.[8] showed that the intensity correlations of interest can be classified by writing
the eight-point vertex 〈K〉 in an expansion of g−1, where g ∝ N�/L. In the lowest
order expansion the eight point vertex 〈K〉 factorizes as a product of two ladder
vertices 〈L〉×〈L〉. Higher order terms of the expansion in g−1 contain Hikami boxes
[58], (irreducible) eight-point vertices connecting two ladder vertices, which describe
the long-range correlations in volume speckle. In this section we are interested in
the short-range correlation only, which follows from the lowest order expansion of
〈K〉.

〈K(ω, ω′, r1, · · · , r4; r5, · · · , r8)〉 =

〈L(ω, ω, r1, r2; r5, r6)〉 × 〈L(ω′, ω′, r3, r4; r7, r8)〉

+〈L(ω, ω′, r1, r2; r5, r8)〉 × 〈L(ω, ω′, r3, r4; r6, r7)〉. (3.36)

Only paired amplitudes survive the averaging process. Fig. (3.7) shows the lowest
order expansion of 〈K〉. The vertex 〈L(ω, ω)〉 in Eq. (3.36) denotes the ladder
diagrams in which two amplitudes with the same frequency travel along the same
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Figure 3.7: Four amplitudes travelling through the slab, which can be com-
bined in two ways in intensity propagators.
Diagram (a) shows the first term of the factorization in Eq. (3.39),
the trivial part. Diagram (b) shows the second term of the factor-
ization in Eq. (3.39), the part that gives the correlation.

path,

〈L(ω, ω, r1, r2; r5, r6)〉 = δ(r1−r2)δ(r5−r6)
∫

L(r1, r5, t)dt. (3.37)

The vertex 〈L(ω, ω′)〉 in Eq. (3.36) denotes the ladder diagrams in which two am-
plitudes with different frequency travel along the same path,

〈L(ω, ω′, r1, r2; r5, r8)〉 = δ(r1−r2)δ(r5−r8)
∫

ei∆ωtL(r1, r5, t)dt, (3.38)

with ∆ω = ω − ω′. The effect of the different wavelengths of the two amplitudes is
taken into account by observing that the phase difference between the two ampli-
tudes that builds up during the propagation through the medium is given by ei∆ωt.
Thus the intensity correlator 〈Tab(ω)Ta′b′(ω

′)〉 in Eq. (3.33) consists of four ampli-
tudes, which can be combined in two ways in intensity propagators as is shown in
Fig. (3.7). The second moment 〈Tab(ω)Ta′b′(ω

′)〉 factorizes in two parts,

〈Tab(ω)Ta′b′(ω
′)〉 = 〈Tab(ω)〉〈Ta′b′(ω

′)〉+

〈Tab(∆pa,∆pb, ω,∆ω)〉〈Ta′b′(∆pa′ ,∆pb′ , ω
′,∆ω′)〉. (3.39)
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The last term in the right hand side of Eq. (3.39) is the product of two intensity prop-
agators, where each one consists of an incoming amplitude and a complex conjugate
with different incoming and outgoing angle and wavelength. The complex conjugate
of 〈Ta′b′(∆pa′ ,∆pb′, ω′,∆ω′)〉 is exactly 〈Tab(∆pa,∆pb, ω,∆ω)〉. The correlation is
determined by the last term in the r.h.s. of Eq. (3.39),

Caba′b′(ω, ω
′) =

|〈Tab(∆pa,∆pb, ω,∆ω)〉|2

〈Tab(ω)〉2
. (3.40)

As is seen in Fig. (3.7) two incoming plane waves with transversal wave vector pa⊥
and pa′⊥ = pa⊥−∆pa⊥ and internal frequency ωand ω′ = ω+∆ω and two outgoing
plane waves with transversal wave vector pb⊥ and pb′⊥ = pb⊥ −∆pb⊥ are attached
to the propagator L(zi, ze, r⊥i, r⊥e, t),

〈Tab(∆pa,∆pb, ω,∆ω)〉 =

�2

16π

∫
ei∆p⊥ar⊥ie−i∆p⊥br⊥eei∆ωtL(zi, ze, ri⊥, r⊥e, t)dtdr⊥idr⊥e =

�2

16π
(2π)2δ(∆p⊥a −∆p⊥b)L(zi, ze,∆p⊥a,∆ω). (3.41)

Notice the resulting delta function in Eq. (3.41), which gives the condition that
the change in the incoming angle has to be equal to the change in the outgoing
angle of the light, ∆p⊥a = ∆p⊥b. In experiments, as described in chapter 4 and
6, where a finite spot size is used, this condition can be relaxed to the condition
that ∆p⊥a − ∆p⊥b is (much) smaller than the angular width of a speckle. Using
the injection depth zi = � (Eq. (2.144)), the ejection depth ze = L − 2

3
� − 2τ0

(Eq. (2.161)), the approximate form of the bare Ladder vertex in Eq. (2.162) and
the approximation sinh(x) ≈ x we obtain for the correlation function in Eq. (3.40),

Caba′b′(ω, ω
′) =

∣∣∣∣∣∣
L(∆p⊥

2
a + 1

Dτa
− i∆ω

D
)1/2

sinh
[
L(∆p⊥2a + 1

Dτa
− i∆ω

D
)1/2

]
∣∣∣∣∣∣
2

; with ∆p⊥a = ∆p⊥b. (3.42)

The correlation in Eq. (3.42) is called the short-range correlation, because it shows
an exponential decay, in contrast to the long-range correlation that will be derived
later. The short-range correlation functions that depend only on angle or frequency
are given by respectively,

Caba′b′(ω, ω) =
L2(∆p⊥

2
a + 1

Dτa
)

sinh2[L(∆p⊥2a + 1
Dτa

)1/2]
with ∆p⊥a = ∆p⊥b (3.43)

Cabab(ω, ω
′) =

2L2∆ω/D

cosh[L(2∆ω/D)1/2]− cos[L(2∆ω/D)1/2]
. (3.44)

When measuring the angular part of the short-range correlation in an experimen-
tal set-up the requirement ∆p⊥a = ∆p⊥b is fulfilled by keeping the laser and the
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Figure 3.8: A result from the experiments to be described in chapter 6, the mea-
sured short-range correlation as a function of the angle of rotation
of the sample, p⊥ = 2π

λ
sin θ. The x-axis is scaled to ∆p⊥L to make

the curves for different sample thickness coincide. Symbols: exper-
imental data for � : L = 27µm, e: L = 38µm, 3 : L = 65µm.
Solid line: Theoretical curve of Eq. (3.43). The correlations were
measured in the infra-red region.

detector at fixed positions and rotating the sample. The angular short-range cor-
relation, a result from the experiments to be described in chapter 6, is shown here
in Fig. (3.8). The frequency dependence is measured by keeping the laser and the
detector at fixed positions and varying the wavelength of the laser. The measure-
ments of the frequency short-range correlation will be presented in chapter 4. Two
different parameters can be determined from the measurement of the short-range
correlation functions. From the angular correlation function the thickness of the
sample can be determined. From the frequency correlation the diffusion constant in
the medium can be determined (if the thickness is known). The diffusion constant
is an important parameter, since the mean free path can be derived from it.
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3.4 Long-range correlation

We turn to the long-range correlation, the correlation on the total transmission.
The theory derived here will be used to describe the experimental results in the next
chapter of the measurements of the long-range correlation in the fluctuations of the
total transmission. Because of interference, the intensity inside the static random
dielectric slab will fluctuate strongly in space (“volume speckle”). Correlation in
the total transmitted intensity may be calculated using a Langevin approach. In
this approach, which was first used in the present context by Spivak et al.[56],
volume speckle acts as a source for a fluctuating flux component jext(r), which leads
to the long-range intensity correlations. The fluctuating flux component jext(r) is
generated by the large fluctuations in the intensity (volume speckle). The decay of
the volume speckle with frequency or incoming angle of the light leads to a decay in
the fluctuating flux correlation, which determines the long-range correlation. Pnini
et al.[54] used the method to calculate a.o. the intensity-intensity correlation in the
total transmission as a function of frequency shift for an incident plane wave. We
shall extend Pnini’s method to include an incident beam with Gaussian intensity
profile in the theory, which we will need to be able to describe the experimental
results of our experimental set-up. We will first calculate the correlation in the
volume speckle that incorporates the influence of the beam profile. The correlation
in the volume speckle will be used to determine the local flux-flux correlator. Using
the Langevin approach we will then calculate the long-range correlation on the total
transmission.

3.4.1 Short-range correlation in “volume”-speckle

The average correlation in the intensity in a correlation volume (speckle-spot) at
depth z is calculated as a function of incoming angle and wavelength. The correlation
function inside the medium is defined as,

Caa′(ω,�ω, r) ≡
〈Ia(ω, r) Ia′(ω′, r)〉 − 〈Ia(ω, r)〉〈Ia′(ω′, r)〉

〈Ia(ω, r)〉〈Ia′(ω′, r)〉
, (3.45)

with 〈Ia(ω, r)〉 the isotropic (diffuse) intensity at r due to incoming light with trans-
verse wave vector p⊥a and frequency ω inside the medium. From now on we drop
the ω dependence in C(ω,∆ω, r). Writing the diffuse part 〈Ia(ω, r)〉 in its field
components we get

〈Ia(ω, r)〉 =
∫
· ·
∫

dr1 · ·dr4 〈G(ω, r, r3)〉〈G
∗(ω, r, r4)〉 ×

〈L(ω, r3, r4; r1, r2)〉〈Ψa(ω, r1)〉〈Ψ
∗
a(ω, r2)〉

= 4π
∫

H(r1, r)δ(r1−r2)〈Ψa(ω, r1)〉〈Ψ
∗
a(ω, r2)〉dr1dr2, (3.46)

with 〈G(ω, r, r3)〉 the average amplitude Green’s function for propagation from r3 to
r in a disordered medium, and 〈Ψa(ω, r1)〉 the incoming amplitude with transversal
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wave vector p⊥a. Writing the correlator 〈Ia(ω, r) Ia′(ω′, r)〉 in its field components
we get

〈Ia(ω, r) Ia′(ω
′, r)〉 =

∫
· · ·

∫
dr1 · · ·dr8 〈G(ω, r, r5)〉〈G

∗(ω, r, r6)〉 ×

〈G(ω′, r, r7)〉〈G
∗(ω′, r, r8)〉〈K(ω, ω′, r5, · · · , r8; r1, · · · , r4)〉 ×

〈Ψa(ω, r1)〉〈Ψ
∗
a(ω, r2)〉〈Ψa′(ω

′, r3)〉〈Ψ
∗
a′(ω

′, r4)〉. (3.47)

The eight-point vertex 〈K〉 factorizes in the same way as in section 3.3.2 (See also
Fig. (A.1)). Using Eqs. (3.46), (3.47) and (3.36) the numerator of Eq. (3.45) is
written as

〈I(ω, r)〉2Caa′(∆ω, r) =
∫
〈G(ω, r, r5)〉〈G

∗(ω′, r, r6)〉 ×

〈L(ω, ω′, r5, r6; r1, r4)〉〈Ψa(ω, r1)〉〈Ψ
∗
a′(ω

′, r4)〉dr1dr4dr5dr6 ×∫
〈G(ω′, r, r7)〉〈G

∗(ω, r, r8)〉 ×

〈L(ω, ω′, r7, r8; r2, r3)〉〈Ψa′(ω
′, r3)〉〈Ψ

∗
a(ω, r2)〉dr2dr3dr7dr8. (3.48)

To ease the calculation the incoming amplitudes are decomposed into their plane
wave components at the injection depth zi,

Ψaω(q⊥) =
∫

dr⊥Ψa(r⊥, ω)eir⊥q⊥; Ψa(r⊥, ω) =
1

(2π)2

∫
dq⊥Ψaω(q⊥)e−ir⊥q⊥ .

(3.49)
Using the plane wave decomposition of the incoming waves and the injection source
in Eq. (2.144) the average intensity in Eq. (3.46) becomes,

〈Ia(ω, r)〉 =
�

(2π)4

∫
〈Ψaω(q1⊥)〉〈Ψ∗a′ω(q2⊥)〉 ×

exp[−ir1⊥∆q1⊥]H(t, zi, z, r1⊥−r⊥)dq1⊥dq2⊥dr1⊥dt, (3.50)

with ∆q1⊥ ≡ q2⊥ − q1⊥. In the same way using the two frequency Ladder in
Eq. (3.38) Eq. (3.48) becomes,

〈I(r⊥, z)〉2Caa′(∆ω, r⊥, z) =
�2

(2π)8
×

∫
〈Ψaω(q1⊥)〉〈Ψ∗a′ω′(q4⊥)〉 e−ir1⊥∆q1⊥H(t, zi, z, r⊥−r1⊥) ei∆ωtdq1⊥dq4⊥dr1⊥dt×

∫
〈Ψa′ω′(q3⊥)〉〈Ψ∗aω(q2⊥)〉 eir2⊥∆q2⊥H(t, zi, z, r⊥−r2⊥) e−i∆ωtdq2⊥dq3⊥dr2⊥dt,

(3.51)
with ∆q1⊥ ≡ q4⊥−q1⊥ and ∆q2⊥ ≡ q3⊥−q2⊥. We now integrate over t, r1⊥ and r2⊥
respectively, which gives the Fourier transform of HL in Eq. (2.140). Since we are
only interested in the average correlation at depth z, Eq. (3.51) is integrated over r⊥.
Subsequent integration over ∆q2⊥ gives ∆q1⊥ = ∆q2⊥. The short-range correlation
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in volume speckle as a function of depth in the slab, beam profile, incoming angle
and frequency-shift is then given by

〈I(z)〉2 Caa′(∆ω, z) =
v2E(� + τ0)

2

4(2π)8D2
×

∫
〈Ψa(q1⊥)〉〈Ψ∗a′(q1⊥+∆q1⊥)〉〈Ψa′(q2⊥+∆q1⊥)〉〈Ψ∗a(q2⊥)〉 ×

cosh[2(L−z)γ1]− cos[2(L−z)γ2]

cosh[2Lγ1]− cos[2Lγ2]
dq1⊥dq2⊥d∆q1⊥, (3.52)

with γ1 ≡ (a2+b2)1/4 cos(φ/2), γ2 ≡ (a2+b2)1/4 sin(φ/2), a ≡ ∆ω/D, b ≡ ∆q 21⊥+k2a,

ka ≡
√

1/Dτa and tanφ ≡ a/b. Eq. (3.52) holds independently for 3 orthogonal

directions of polarization. To summarize, Eq. (3.52) gives the correlation function
of the fluctuations (bulk speckle)inside the sample. In the Langevin approach that
we are going to use, the local strong fluctuations in the intensity (they are of order
unity) will generate local random fluxes, which act as sources for the fluctuations on
the total transmission. The local random flux is a consequence of the local spatial
intensity fluctuations. When the local spatial intensity changes (as described by
Eq. (3.52)) the local fluxes change, and consequently the total transmission changes.
The importance of Eq. (3.52) is that the correlation in the local intensity fluctuations
will describe the correlation in the local current fluctuations as a function of the angle
of incidence of the light or the frequency change. An important second observation
is that the correlation function of the bulk speckle depends not only on the angle
of incidence of the light or the frequency change, but also on the incoming beam
profile.

3.4.2 Long-range correlation in the Langevin approach

The local random fluctuating flux is determined by the fluctuations on the local
intensity δI(r) ≡ I(r)− 〈I(r)〉 according to the following constitutive equation,

D∇2δI(ω, r) = ∇ · jext(ω, r). (3.53)

As is shown in Pnini’s paper[54], from Eq. (3.53) an expression for the long-range in-
tensity correlation function 〈δI(ω,p⊥1, z1) δI

∗(ω′,p⊥2, z2)〉aa′ is obtained (the Four-
ier transform in the (x,y) plane is taken) that in our notation reads

〈δI(ω,p⊥1, z1) δI
∗(ω′,p⊥2, z2)〉aa′ =

D−2
∫ L

0

∫ L

0
d z′ d z′′ 〈jiext(ω,p⊥1, z

′) ji ∗ext(ω
′,p⊥2, z

′′)〉aa′×

[ HD(p⊥1; z1, z
′) HD(p⊥2; z2, z

′′) (p⊥1 ·p⊥2) + H ′D(p⊥1; z1, z
′) H ′D(p⊥2; z2, z

′′) ] ,
(3.54)

where

HD(p⊥; z, z′) =
sinh[p⊥z<] sinh[p⊥(L− z>)]

p⊥ sinh[p⊥L]
, (3.55)
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is the propagator of the diffusion equation in Eq. (3.53), z< ≡ min[z, z′], z> ≡
max[z, z′] and H ′D(p⊥; z, z′) is the derivative of HD with respect to its second argu-
ment z′. The flux correlator 〈jext(ω, r) j∗ext(ω

′, r′)〉aa′ in Eq. (3.54) is obtained from
the correlation function (Eq. (3.52)) for volume speckle and the velocity of energy
transport vE between neighbouring correlation volumes.

Originally the Langevin approach was used to describe the brownian motion
of a particle[59]. A random external force Fext on the particle was proposed, with
〈Fext(t)〉 = 0 and 〈Fext(t)Fext(t′)〉 = Γδ(t−t′). Here we apply the Langevin approach
not to a random force in time, but to a random flux jext in space, static in time,
〈jext(r)〉 = 0, 〈jext(r)jext(r′)〉 = Γδ(r−r′). With heuristic arguments we will derive
the magnitude Γ of the random flux correlator. The large fluctuations in the intensity
(volume speckle) lead to local random fluxes jext(r). The correlation in r-space
between these random fluxes is determined by the size in r-space of one volume
speckle. Since on the length scale of one volume speckle spot (the volume of one
speckle is approximately �λ2) the diffusion propagator varies slowly, the dependence
of 〈jext(ω, r) j∗ext(ω

′, r′)〉aa′ on |r−r′| is replaced by a δ-function. The ‘strength’ of
this δ-function is found by integrating the spatial short-range correlation function
[51] over space to obtain the correlation volume of one speckle spot (this yields
2π�/k2 with k the wave vector in the medium). The magnitude of the random flux
and the flux correlator are determined by the energy transport velocity and the
fluctuations of the volume speckle, respectively,

jext = vE(I−〈I〉); 〈jiextj
j
ext〉 = δij

v2E〈(I−〈I〉)
2〉

3
, (3.56)

where averaging over angles gave a factor of 1/3. The correlation between the
random fluxes as a function of angle of incidence or the frequency change of the
incoming light is given by the correlation function of volume speckle. For the flux
correlator it results in,

〈jiext(ω, r) j
j ∗
ext(ω

′, r′)〉aa′ = δij
v2
E
π�

3k2
〈I(r)〉2 Caa′(∆ω, r⊥, z) δ(r⊥−r

′
⊥) δ(z−z′).

(3.57)
The prefactor that we obtain in the right-hand side of Eq. (3.57) is a factor of 2
lower than the corresponding factor in Pnini’s paper, to make up for the fact that
jext(ω, r) consists of two independent polarization components. An other important
difference is the appearance of the energy transport velocity in Eq. (3.57).
In order to obtain a description that goes beyond the plane-wave solution for the
correlation in the total transmission in Pnini’s paper we have to retain the informa-
tion of the beam profile in the flux correlator. We proceed as follows. We transform
Eq. (3.54) to real space, and integrate over r1⊥ and r2⊥ ≡ r1⊥ + ∆r⊥ at z1, z2 = ze,
with ze the ejection depth, to obtain the fluctuations on the total transmission
δT = πδI(ze), in analogy with Eq. (2.147),

〈δT 2(∆ω) 〉aa′ ≡
π2

(2π)4

∫
〈δI(ω,p⊥1, ze) δI

∗(ω′,p⊥2, ze)〉aa′
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eir1⊥(p⊥1−p⊥2) e−ip⊥2∆r⊥dr1⊥d∆r⊥dp⊥1dp⊥2
= π2〈δI(ω,p⊥1 = 0, ze) δI

∗(ω′,p⊥2 = 0, ze)〉aa′ . (3.58)

Since after the integration over r1⊥ in Eq. (3.58) it holds p⊥1 = p⊥2, Eq. (3.54)
depends on the length of the vector p⊥ only, and the effect of absorption may be

introduced by substituting | p⊥ |→
√
| p⊥ |2 +k2a with ka =

√
1/Dτa, where τa is the

inelastic mean-free time. Moreover, because p⊥1 = p⊥2, the Fourier transform in
the (x,y) plane of the flux correlator (Eq. (3.57)) that depends on p⊥1− p⊥2, turns
out to be independent of p⊥ and will read

〈jext(ω,p⊥1, z) j ∗ext(ω
′,p⊥1, z)〉aa′ =

v2Eπ�

3k2
〈I(z)〉2 Caa′(∆ω, z). (3.59)

Though independent of p⊥1, the flux correlator still depends on the beam profile
through the correlation function for volume speckle (see Eq. (3.52)). Assuming the
perpendicular incident beam to be Gaussian, we have

〈Ψinc(r⊥)〉 =

√
2

ρ0
√
π
e−r

2
⊥/ρ

2
0 , (3.60)

and its Fourier transform

〈Ψinc(q⊥)〉 = ρ0
√

2πe−q
2
⊥ρ
2
0/4. (3.61)

The plane wave decomposition around the incoming direction qa⊥ of the cylindrical
symmetric beam is then given by the above plane wave decomposition, with the
argument q⊥ shifted by qa⊥,

Ψa(q⊥) = Ψinc(q⊥ − qa⊥). (3.62)

The incoming fields in Eqs. (3.51) and (3.52) are respectively,

〈Ψa(q1⊥)〉 = ρ0
√

2πe−(q1⊥−qa⊥)
2ρ20/4 〈Ψa′(q3⊥)〉 = ρ0

√
2πe−(q3⊥−qa′⊥)

2ρ20/4 .
(3.63)

Integrating over q1⊥ and q2⊥ in Eq. (3.52) we get∫
dq1⊥ dq2⊥〈Ψa(q1⊥)〉 〈Ψ∗a′(q1⊥+∆q1⊥)〉 〈Ψa′(q2⊥+∆q1⊥)〉 〈Ψ∗a(q2⊥)〉 =

(2π)4e−ρ
2
0(∆q1⊥−∆qa⊥)

2/4, (3.64)

with ∆qa⊥ ≡ qa⊥−qa′⊥. We may now combine all intermediate results to calculate
〈δT 2(∆ω)〉. Using Eqs. (3.52), (3.54), (3.55), (3.58), (3.59) and (3.64) and taking
p⊥1 = p⊥2 = kap̂⊥1 we get

〈δT 2(∆ω)〉aa′ =
�v4E(� + τ0)

2(2
3
� + τ0)

2k2a
192πk2D4

∫
d∆q1⊥

∫ L

0
dz′ e−ρ

2
0(∆q1⊥−∆qa⊥)

2/4 ×

cosh[2(L− z′)γ1]− cos[2(L− z′)γ2]

cosh[2Lγ1]− cos[2Lγ2]
×

cosh[2kaz
′]

sinh2[kaL]
, (3.65)



60 Correlations on the transmission

where ∆q⊥1 represents the effect of the angular spread in a focussed beam and ∆q⊥a
represents the change in the incoming angle of the beam. The total transmission
〈Ta〉 is obtained by integrating Eq. (3.50) over r1⊥ at z = ze and yields (T = πI(ze))

〈Ta〉 =
vE(� + τ0)(

2
3
� + τ0)ka

4D sinh[kaL]
. (3.66)

Integrating over z′ in Eq. (3.65), dividing by 〈Ta〉2, and putting for later convenience
the energy- and phase velocities vE and vφ (that are not rigorously known) into one
parameter α = vE × v2φ/c

3 (using k = 2πc/(vφλvac)), we obtain the final result in
which the mean free path is eliminated in favour of the diffusion constant.

C2(∆q⊥a,∆ω) =
〈δT 2(∆ω)〉aa′

〈Ta〉2
= α×

cλ2vacL

8π2ρ20D
F2(∆q⊥a,∆ω), (3.67)

with

F2(∆q⊥a,∆ω) ≡
∫

d∆q1⊥
4π

ρ20 e
−ρ20(∆q1⊥−∆qa⊥)

2/4

L(cosh[2Lγ1]− cos[2Lγ2])
×

{
γ1 sinh[2Lγ1]

γ21 − k2a
−

γ2 sin[2Lγ2]

γ22 + k2a
−

ka sinh[2Lka]

γ21 − k2a
−

ka sinh[2Lka]

γ22 + k2a

}
. (3.68)

Eqs. (3.67) and (3.68) give the desired result with which we will be able to describe
the measurements in the next chapter, the long-range correlation as a function of
angle of incidence and frequency, incorporating the influence of the beam profile.
In the plane wave limit ρ0  L and in the absence of absorption the long range
correlation function as a function of frequency only reduces to

C2(∆ω) =
3v2φλ

2
vac (sinh[L

√
2a]− sin[L

√
2a])

4π2c2�ρ20
√

2a (cosh[L
√

2a]− cos[L
√

2a])
, (3.69)

which differs from Pnini’s result in the prefactor only. Apart from the already
mentioned factor of two that results from the effect of the transversal nature of the
waves, this is due to different definitions of the beam profile.

3.4.3 Conclusion

Let us discuss some properties of the correlation function in Eq. (3.67). In the limit
ρ0 →∞, F2(0, 0)→ 2/3. This makes the relative variance on the total transmission,

〈δT 2a 〉

〈Ta〉2
=

2L

2k2ρ20�
≈

L

2N�
, (3.70)

where Eq. (3.18) was used. In the heuristic derivation of the variance of the total
transmission in section 3.2, where we assumed that transmission modes were in-
dependent, we found the relative variance to be proportional to 1/N (Eq. (3.29)).
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Figure 3.9: A three dimensional plot of the integrand,

1

L(cosh[2Lγ1]− cos[2Lγ2])

{
γ1 sinh[2Lγ1]

γ21
−

γ2 sin[2Lγ2]

γ22

}
,

in Eq. (3.68) for ka→0, ∆q⊥a=0(i.e. no change in the incoming angle of the beam).
The upper surface shows the value of the integrand as a function of ∆q and ∆ω,
for a sample thickness of L = 30µm. Contour lines connect points of equal height.

The lower surface shows the weight function
∆qρ20
4πL

exp(−ρ20∆q2/4) determined by the
spot size of ρ0 = 26µm on the sample. To obtain the correct prediction of the
long range correlation function as a function of frequency only, the upper surface is
multiplied by the weight function and summed over ∆q-space. In the back plane of
the graph the upper curve shows the correlation as a function of ∆ω for the plane
wave limit: lim ρ0 → ∞F2(0,∆ω) (Eq. (3.68)), and the result of the correlation
function convolved over ∆q-space for ρ0 = 26µm(lower curve). The lower curve
shows the prediction of a measurement for a sample with L = 30µm and a finite
spot size determined by ρ0 = 26µm. Clearly is seen that the top of the correlation
function is flattened by the convolution over ∆q-space.
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Figure 3.10: Simple physical picture of the enhancement of the variance on the
total transmission by interference inside the sample. Two inten-
sities propagate through the sample and interfere. Suppose the
interference is constructive. The intensity at the point of interfer-
ence is higher than the average intensity, and this higher intensity
diffuses to r⊥3 and r⊥4 at the transmission side of the slab. Since
both higher intensities come from the same bulk speckle, the in-
tensities at r⊥3 and r⊥4 are correlated. The correlation over large
(i.e. diffusion) length scales of the fluctuating intensity enhances
the fluctuations on the total transmission.

Clearly transmission modes become correlated, and the relative variance is enhanced
proportional to L/�. In Fig. (3.10) a simple physical picture is drawn to explain the
correlation in the transmission. The relative variance also can be explained in the
following way. The probability that two intensities will interfere is inverse propor-
tional to the illuminated area (the number of modes), since intensities that start to
propagate far apart have a low probability to interfere. The thicker the slab, the
larger the probability that two intensities will diffuse towards each other. Thus the
variance is proportional to L/N�. In an experiment, to be able to observe the fluc-
tuations, one wants the fluctuations to be as large as possible. This means a small
mean free path, and a small illuminated area (spot size). However, as can be seen in
Fig. (3.9), a small spot size influences the general shape of the correlation function
and its magnitude. Even so, coming in with a point source (an infinite small spot
size) gives a diffuse broadened intensity profile at the exit interface of the order of
the sample thickness (i.e. a large number of modes). The only way to prevent this is
to confine the sample by perfectly reflecting walls (a waveguide with disorder). This
is difficult in the optical regime. We chose to use non-confined samples to be able
to probe different parts of the same sample to improve the statistics of the measure-
ment. We turn to the explanation of the shape of the correlation function. For large
∆ω or large ∆q⊥ the correlation decays as respectively 1/(∆ω1/2L) or 1/(∆q⊥L),
an algebraic decay. This can be explained as follows. The fluctuations are caused
by the interference inside the sample. As the place of interference is close to the
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entrance interface, the correlation in the bulk speckle decays slower with ∆ω or ∆q⊥
than deep in the sample. The sum of all exponential decaying bulk speckles with
their decay parameter depending on the depth in the medium results in an algebraic
decay. The influence of the finite spot size on the correlation function for small ∆ω

is most clearly seen in Fig. (3.9). The integrand of Eq. (3.68) is shown as a function
of both ∆ω1/2L and ∆q⊥L in a three dimensional graph. The back plane shows the
plane wave limit of F2(∆q⊥a = 0,∆ω) and the result for F2(∆q⊥a = 0,∆ω) after
the convolution over ∆q⊥1 because of the finite beam diameter with ρ0 = 26µm,
which clearly demonstrates the flattening of the top.
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Chapter 4

Experiments on the transmission

4.1 Introduction

In this chapter we discuss the experiments that were performed to measure the short-
range and long-range correlation functions in the frequency domain. We measured
the fluctuations on the transmission as a function of the wave length (frequency) of
the light. The samples consisted of slabs of titanium dioxide particles in a static
random structure. Titanium dioxide was used because of its high refractive index
(n ∼ 2.7) in the visible wavelength range combined with an extremely low absorp-
tion. It is the most effective readily available scatterer in optical experiments. The
theory of the short- and long-range correlation was discussed in the previous chap-
ter. It was shown that the relative fluctuations in a one channel in-one channel
out experiment (C1) are of order unity, and that the relative fluctuations in a one-
channel-in-all-channel-out experiment (C2) are of order one over the conductance,
g−1. To make the fluctuations on the total transmission experimentally accessible
the conductance should be small. In the optical experiments to be described in this
chapter and the next, the achieved conductance was typically of the order of 10000.
The expected fluctuations on the total transmission are therefore still extremely
small, and great care had to be taken to ensure that the measured fluctuations were
indeed caused by interference processes in the disordered sample, and not by ex-
perimental artefacts. The experimental set-up is discussed in section 4.2, and the
techniques used to eliminate trivial sources of fluctuations are explained. Section
4.3 discusses the data analysis. A fundamental problem results from the finiteness
of the frequency range over which the transmission can be measured. This finiteness
impedes the resolution of very slowly oscillating components in the fluctuations, i.e.
it impedes the detection of very long-range correlations. Section 4.3 explains how
the data were analysed to deal with the above mentioned fundamental problem in
the interpretation of the results. In section 4.4 the results of the measurements of
the short- and long-range correlations are presented. Indications for a long-range
correlation have been found earlier in the form of a long-range tail in the short-range
correlation function by Genack et al.[60], in microwave experiments on samples of
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Figure 4.1: Experimental set up for the recording of fluctuations in the to-
tal transmission. SM: steppermotor; Q: quartz beam splitter; CH:
chopper; SF: spatial filter; L: focussing lens; IS: integrating sphere.
Inset: Insert as fitted in port of integrating sphere, carrying a sam-
ple on transparent supporting material.

a confined geometry. The long-range correlation functions that we measured for
different sample thickness and different spot size on the sample are shown to be in
excellent agreement with the theory of chapter 3, thus establishing for the first time
the full long-range correlation function on the total transmission[61, 57]. Finally, the
experiments gave the second independent confirmation of the reduction of transport
velocity of light in disordered media, as was first shown by van Albada et al.[9].

4.2 Measurements

4.2.1 Experimental set-up

The experimental set up for the total transmission experiments is shown in outline
in Fig. (4.1). A Coherent Radiation 590 dye laser operating in broadband mode
was used as a light source, and its frequency was varied by driving the birefringent
filter under computer control. The beam was chopped, spatially filtered, slightly
expanded, and then focussed onto the sample, which was mounted on an insert, fit-
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Figure 4.2: Total transmission as a function of wavelength for a sample of 30µm
thickness at ρ0 = 26µm. The relative fluctuation in the transmis-
sion is about 1 %.

ting in the porthole of an integrating sphere. Fluctuations in the total transmission
were measured by recording the diffuse intensity in the sphere as a function of wave-
length. The beam diameter could be varied by changing the position of the focussing
lens L with respect to the sample, and was determined by measuring the distance
across the beam between the 1/e-points with a 10µm pinhole. The sample-detector
assembly was mounted on a translation stage driven by stepper motors under com-
puter control. In each scan, 1024 data points were taken over a wavelength interval
between 622 nm and 583 nm. In between scans, the lateral position of the sample
was changed by at least 4 times the beam diameter. A set of scans consisted of
16 consecutive scans probing different parts of a same sample. In the case of C1-
type scans, the integrating detector was replaced by a photomultiplier fitted with
a polarizer and a pinhole, positioned at some distance from the sample. Extreme
care was taken to eliminate any fluctuations that are not due to interference effects
within the sample: The output of the dye laser was stabilized through a feedback
circuit coupled to the pump laser (this also minimizes the influence of non-linearities
of the signal- and reference detectors and permits the dynamic range of the lock-
in amplifiers and A/D-converters to be fully exploited over the entire wavelength
range). A ratio-technique was used to filter out the remaining source fluctuations.
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The reference photo-diode was installed within another integrating sphere because
with an unscrambled incident beam its protective coating was found to produce
interference fringes. The recorded (total) transmitted intensity showed a drift as
a function of wavelength, resulting from different wavelength dependent transmis-
sion characteristics of optical components in the signal- and reference beams, the
wavelength-dependence of the average transmission through the sample (the total
transmission is proportional to �/L, and � is wavelength dependent), and from dif-
ferent response curves of the detectors. This drift was corrected for by recording a
response curve before a set of scans was started, using an unfocussed beam. The
fluctuations on the total transmission are proportional to L/�N , i.e. proportional
to the optical thickness L/� and inverse proportional to the number of modes (see
Eq. (3.70)). The number of modes is proportional to the area of the beam. The
fluctuations on a scan with an unfocussed beam are extremely small, and this gives
a smooth response curve of the experimental set-up. The recorded curves were di-
vided by this response curve. We found that even so, some wavelength dependent
drift remained. Experiments at different power levels showed this remaining drift
to be of thermal origin: the focussed beam raises the temperature of the probed
part of the sample more than does an unfocussed beam, and the resulting expansion
slightly changes the wavelength-dependence of �. Before processing the data, we
therefore calculated the average remaining linear drift in the scans belonging to a
set, and corrected each individual scan for this linear drift. Part of a genuine linear
drift component of the fluctuating intensity is lost in this way. A typical individual
scan is shown in Fig. (4.2). It is seen that the fluctuating part of the signal appears
on top of a large background. Depending on the sample-thickness and spot-size,
relative fluctuations were found ranging from 0.6− 2.8 %. At constant wavelength
of the incoming light the relative fluctuation was less than 0.05 %.

Samples were prepared by suspending rutile T iO2 pigment in a solution of 3
volume % of PMMA relative to T iO2 in chloroform. The diameter of the (potato
shaped) T iO2 particles was 220 nm ± 70 nm. A droplet of the suspension was
put on a transparent substrate, and spread out with a razor blade mounted on a
translation stage to produce an uniform thickness of the sample. After evaporation
of the chloroform, the thickness of the sample was determined microscopically. The
PMMA was added to act as a glue between the T iO2 particles. The volume fraction
of T iO2 in the resulting samples was calculated from density determinations to be
36%, the absorption length �a was determined to be � 70µm.

4.3 Data analysis

In this section we discuss experimental constraints on the measurement of the cor-
relation functions, and describe methods that we used to get past their effect in the
interpretation of the results.
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4.3.1 Ensemble average versus the average over the fre-

quency range

The correlation functions sought are defined as

C(∆ω) ≡
〈δT (ω)δT (ω′)〉

〈T (ω)〉2
, (4.1)

with T (ω) the (total) transmitted intensity at frequency ω, and δT (ω) ≡ T (ω) −
〈T (ω)〉. Under the experimental conditions (rigid samples) the average over the dis-
order 〈T (ω)〉 cannot be obtained, and the best approximation at hand for its value
is the average over the frequency range T (ω). Since e.g. the sample thickness may
slightly vary with the position of the beam on the sample (and thus the average total
transmission may slightly vary), T (ω)-values can only be calculated per individual
scan and not for a whole set of scans. The consequence of using the average over the
frequency-range instead of that over the disorder is that in a Fourier decomposition
of δT (ω) the zeroth component will be missing (the zeroth component of δT (ω) is
T (ω)−〈T (ω)〉). Similarly, the linear drift correction discussed in the former section
will reduce the first Fourier component and cause some redistribution among a few
low-order components. The combined effect of the reduction of the measured slow
oscillating fluctuations with respect to the ‘true’ oscillations will be a negative offset
of the experimental C(∆ω) with respect to the ‘true’ function, since fluctuations are
missing and since the slow oscillating fluctuations determine the decay of the corre-
lation function for large ∆ω outside our plotrange. In the measurement of C1(∆ω)
this effect is not important, but for C2(∆ω) it is. In section 4.4 we will therefore
compare theoretical C2(∆ω) curves to both ‘raw’ measured ones, and measured ones
that were recalculated on the basis of a comparison with theory of all but their lowest
Fourier components.

4.3.2 The correlation function in the Fourier domain

We will make use of the fact that there exist a simple relation between the Fourier
decomposition of the correlation function and the Fourier decomposition of the mea-
sured fluctuations (cf. Eq. (4.4) and [62]). By comparing the Fourier decomposed
theoretical correlation function with the Fourier decomposed measurements, a good
agreement is shown between measurements and theory. The measured correlation
functions are recalculated by adding the (unavailable) zeroth component and sub-
stituting the first component by its theoretical value. The recalculated correlation
functions were obtained as follows: The discrete Fourier transform of δT (ωm) is
defined as,

δT (kn) ≡
1
√

Ω

Ω−1∑
m=0

[T (ωm)− T (ω)]eikn∆ωm, (4.2)

with kn ≡ 2πn/(ωΩ−1− ω0) ; n = 0, · · · ,Ω−1; Ω is the total number of data points
in a scan; ∆ωm is m times the frequency step in the measurement. If we define the



70 Experiments on the transmission

Fourier transform of C(∆ω) as,

C(kn) ≡
1
√

Ω


Ω/2−1∑
m=0

C(∆ωm)eikn∆ωm +
Ω−1∑
m=Ω/2

C(∆ωΩ−m)eikn∆ωm


 , (4.3)

the following simple expression for the Fourier decomposition of C(∆ω) can be
proven, if we assume T (ωm) to be periodic (with periodicity Ω),

C(kn) =
1
√

Ω

[
δT (kn)δT

∗(kn)/T (ω)
2]
. (4.4)

This is a very useful equation. It relates the Fourier decomposition of the correlation
function directly to the Fourier decomposition of the fluctuations. The Fourier
decomposition of the theoretical correlation function is done numerically.

To perform the numerical Fourier decomposition in Eq. (4.3) of the long-range
correlation function all parameters in the theoretical correlation function need to
be known. The largest problem poses the constant α = vEv

2
φ/c

3 in Eq. (3.67). The
experimentally determined values for ρ0 and L used in the calculation of the theoret-
ical C(kn) may differ somewhat from the actual values. Relatively small errors in ρ0
and L mainly affect the magnitude of the correlation function that is proportional to
L/ρ20, but hardly affect its general shape. We therefore express the Fourier decom-
position of the long-range correlation function as C(αfit, kn), with αfit an adjustable
parameter instead of the constant α (≡ vEv

2
φ/c

3). The value of the adjustable pa-
rameter αfit may vary from sample to sample and from beam diameter to beam
diameter in the measurements due to inaccuracies in the experimental determina-
tion of ρ0 and L. Later we will compare the experimentally found value of αfit with
a value of α based on a reasonable estimate of vE and vφ. We proceeded the follow-
ing way. For every individual combination of sample thickness and spot size, the
calculated curve was fitted to the 4th through 300th experimental Fourier component
using the value for the diffusion constant D found from the C1 measurements, and
αfit as only adjustable parameter. We ‘improved’ the set of experimental Fourier
components by replacing the first one by its calculated counterpart, and adding the
calculated zeroth component. The improved set was then transformed back.

4.4 Results

4.4.1 The short-range correlation C1

In Fig. (4.3) we present the results of the short-range C1(∆ω) measurements for
samples of 13, 22, 30 and 45 micron thickness. The scans were made over frequency
intervals of 19113 GHz for the 13 and 22 µm-samples, and 6371 GHz for the 30
and 45 µm-samples respectively. Using the diffusion coefficient D as only adjustable
parameter, the theoretical curve Eq. (3.44), convolved with the (Gaussian) laser line
width of 10 GHz, was fitted to the data points. The smooth curves correspond to a
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Figure 4.3: Comparison of measured C1(∆ω)-correlation functions with theory.
Symbols: experimental data for e: L = 13µm, 2 : L = 22µm,
� : L = 30µm, 3 : L = 45µm. Smooth lines: theoretical curves as
calculated for D = 12m2s−1, convolved with the laser linewidth of
10GHz.

value of D = 12 m2s−1. The horizontal scale was chosen such as to scale out the L-
dependence of the theoretical curves. Deviations from the resulting ‘universal’ curve
are due to the convolution with the laser linewidth. We conclude that Eq. (3.44)
provides a good description of the experimental results.
In Fig. (4.4) we compare theory and experiment for the C1 correlation function in
the Fourier domain. The data correspond to 30 and 45 µm-samples respectively.
The measured curves represent C(kn) averaged over 32 scans, plotted as a function
of the Fourier component number. The smooth curves are the calculated C(kn),
obtained by numerically Fourier transforming Eq. (3.44) after convolving with the
laser line width of 10 GHz. Up to a cut-off that results from the finite slab-thickness,
the Fourier components of the C1-correlation function are of equal strength, and
this explains why the absence of the zeroth component (c.f. section 4.3) is of little
importance here.
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Figure 4.4: Comparison of measured C1(∆ω)-correlation functions with theory
in the Fourier domain. Upper curve: L = 30µm; lower curve:
L = 45µm. Smooth lines: theoretical curves convolved with the
laser line width of 10 GHz.

4.4.2 The long-range correlation C2

Fig. (4.5) shows experimental C2(∆ω) curves as measured for 13, 30, 45 and 78
µm-samples using a beam diameter defined by ρ0 = 26µm. All scans were made
over a frequency range of 31856 GHz. The choice of the horizontal and vertical
scales is such that the theoretical curves (only the plane-wave limit is shown) should
exhibit an uniform tail. The presented results for each thickness are averages over 32
scans. All experimental curves indeed show a slowly decaying tail that, as expected
from the absence of the zeroth Fourier component, lies below the theoretical curve.
The discrepancy is smaller for the thicker samples because there the relative scan
length (the absolute scan length times the square of the thickness) is larger, and
consequently the value of δT (ω) is expected to be closer to 〈δT (ω)〉. The predicted
decrease in correlation for small ∆ω with increasing slab-thickness that is due to
the finite beam diameter, is indeed found.

Fig. (4.6) shows how theory and experiment compare for the C2-function in
the Fourier domain. The curves correspond to 13 and 53 µm-samples respectively.
The measured curves represent the real Fourier components C2(kn) averaged over
32 scans, and plotted as a function of the Fourier component number. The smooth
curves are least squares fits of the calculated C2(kn), with α in Eq. (3.67) replaced
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Figure 4.5: Raw experimental C2(∆ω) data as a function of sample thickness
at constant beam diameter given by ρ0 = 26µm. e : L = 13µm, 2
: L = 30µm, � : L = 53µm, 3 : L = 78µm; Solid line: ‘plane-wave
limit’ (ρ0  L).

by an adjustable parameter αfit, to these data points over the fourth up to the
three-hundredth Fourier component. The calculated C2(αfit, kn) were obtained by
numerically integrating Eq. (3.68) over ∆q1⊥ for each frequency-shift ∆ωm, and
numerically Fourier-transforming the C2(∆ωm) according to Eq. (4.3).

The presence of a long-range tail in the measured C2(∆ω) correlation function
and its absence in the C1(∆ω) function is very clearly seen by comparing Figs. (4.4)
and (4.6). In the C2 correlation function the magnitude of the Fourier components
increases with decreasing component number, whereas in the C1-function their mag-
nitude is constant.

In Figs. (4.7) and (4.8), experimental C2 correlation functions as obtained
by back transformation after correction (c.f. section 4.3) of C(kn) are presented.
Fig. (4.7) shows the shape of C2(∆ω) as a function of the slab thickness at constant
beam diameter, and Fig. (4.8) shows the effect of the beam diameter at constant
slab-thickness. In both figures the tails of the correlation functions have an uniform
algebraic decay. The different shapes for small ∆ω reflects the effect of the beam
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Figure 4.6: Comparison of C2(∆ω)-data with theory in the Fourier domain.
Upper curve: L = 53µm, lower curve: L = 13µm, both curves
ρ0 = 26µm. Smooth lines: least squares fits of theory to the data
over the 4th through 300th Fourier component with αfit as the only
adjustable parameter.

diameter on the shape of the correlation function that is explained in Fig. (3.9).
As mentioned in section 4.3, the fits were made using an adjustable parameter
αfit instead of the proportionality constant α in calculating the theoretical curves.
The αfit-values found for the various curves are listed in Table (4.1). For clarity,
the theoretical curves in the figures were all calculated using the average value
αfit = 0.10 (with the chosen x- and y-scales, this makes the tails coincide). The
y-values of the data points corresponding to each curve were multiplied by the
respective values of αfit/αfit. From the Figs. (4.7) and (4.8) it is seen that the
theory in chapter 3 (Eqs. (3.67) and (3.68)) correctly describe the shape of the
C2(∆ω)-correlation function, including the influence of L and ρ0.

4.4.3 The variance of the long-range fluctuations

We now turn to the magnitude of the correlation functions. The slight variation in
the values of αfit listed in Table (4.1) is easily explained in terms of inaccuracies in
the values of ρ0 and L, and in view of the wide range over which these parameters
were varied, we conclude that αfit is indeed a constant. In earlier theoretical work,
different values were found for the magnitude of the C2 correlation function[54, 56].
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Figure 4.7: Recalculated (see the end of section 4.3.2 and 4.4.2) C2(∆ω)-
correlation as a function of sample thickness at constant beam
diameter, given by ρ0 = 26µm. Symbols: e : L = 13µm; 2
: L = 30µm; � : L = 53µm; 3 : L = 78µm. Solid lines: calculated
from Eqs. (3.67) and (3.68), using αfit = 0.10.

The present results permit the evaluation of the magnitude.
In the previous chapter the shape and magnitude of the C2 correlation func-

tion were calculated (Eq. (3.67)), and the data show that this expression is directly
proportional to the experimental C2(∆ω)-function. We will compare the average
value αfit as found from the fit of theory to the data to the predicted value of α,
α = vEv

2
φ/c

3. We therefore calculate α: The velocity of energy transport between
neighbouring correlation volumes in our medium by light waves of λ � 600nm is low,
due to resonances in the scattering particles. From independent measurements of �
and the mean-free time τmf a value of vE � 5±1×107 ms−1 was found[9]. A reliable
experimental value for the phase velocity in the medium vφ is not available. From
Brewster angle measurements it was found vφ = 2.3± 0.2× 108 ms−1[63]. This tech-
nique however probes sample properties very near the surface, that may be different
from the bulk properties. Values, estimated on the basis of Mie theory[64] and the
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Figure 4.8: Recalculated (see the end of section 4.3.2 and 4.4.2) C2(∆ω) cor-
relation as a function of beam diameter at constant sample thick-
ness L of 30µm. Symbols: e : ρ0 = 10µm; 2 : ρ0 = 26µm;
� : ρ0 = 32µm; 3 : ρ0 = 74µm. Solid lines: calculated from
Eqs. (3.67) and(3.68), using αfit = 0.10.

Bruggeman effective medium approximation[65] fall in the range 2.3±0.3×108 ms−1.
Substitution of these values into the definition of α yields α � 0.1, in complete agree-
ment with the value found for αfit in Table (4.1). We conclude that the description
by Eq. (3.67) is quantitative, and that the energy transport velocity is approximately
six times lower than the vacuum velocity.

4.5 Conclusions

We have performed a detailed experimental study of correlations in wavelength-
dependent intensity fluctuations in light after transmission through random dielec-
tric slabs. The theory in chapter 3 fully describes the measured short-range and
long-range correlations in the transmitted intensity. The model incorporates the in-
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Sample thickness Beam profile Number of αfit
L (in µm) ρ0 (in µm) scans

13 26 32 0.087
30 26 32 0.098
53 26 32 0.091
78 26 32 0.106
30 10 32 0.113
30 26 32 0.098
30 32 16 0.117
30 74 16 0.102

Table 4.1: Values of the only adjustable parameter αfit, obtained by fitting
Eq (3.67) to the experimental data, for the specified sample thick-
ness, spot diameter and number of scans over which was averaged.
Average value αfit of αfit is 0.10

tensity profile of the incident beam, and its predictions for both the short-range and
the long-range correlation functions are in quantitative agreement with the experi-
mental results, thus establishing the full long-range correlation function for the first
time [61, 57] In addition, the experiments give the second independent confirmation
of the reduction of the transport velocity of light in disordered media, as was first
shown by van Albada et al.[9].
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Chapter 5

The distribution of the total
transmission

5.1 Introduction

In this chapter we discuss the distribution of the fluctuations on the total transmis-
sion. In the previous chapters it was shown theoretically and proven experimentally
that the second cumulant (i.e. the variance) of the total transmission is larger than
expected for independent transmission coefficients Tab. Recently the full distribution
has received much attention. For electrons it was theoretically shown that the dis-
tribution of the Universal Conductance Fluctuations (UCF) is Gaussian, but crosses
over to a log-normal distribution as one approaches the Anderson transition[12]. For
light Genack and Garcia[11] showed experimentally that in the multiple scattering
regime the intensity statistics of the speckle changes from Rayleigh for small intensity
speckles to a stretched exponential for large intensity speckles. This was confirmed
theoretically by Koganet al. [10], who also predicted a Gaussian distribution for the
fluctuations on the total transmission of light. In computer simulations Edrei et al.
[66] found a Gaussian distribution of the total transmission in two dimensions in the
diffusive regime, which changed to a log-normal distribution for increasing disorder.

In this chapter we present the experimental distribution function of the fluc-
tuating light intensity in total transmission through a disordered slab. The data
show a distribution that is almost Gaussian, but contains a small but significant
non-Gaussian contribution due to the presence of a third cumulant. It expresses
a correlation in the cubed total transmission, which is different from the optical
short-range and long-range correlations in the previous chapter. The scattering dia-
grams responsible for this new correlation are calculated in appendix B without free
parameters and a good agreement is found between experiment and theory.
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5.2 Distributions

5.2.1 Cumulants

The full distribution of a quantity is completely determined by all the moments or
cumulants of the quantity and vice versa[67]. Take a probability distribution P (x).
The characteristic function φ(k) associated with this distribution is the Fourier
transform of the distribution. A Taylor expansion of the characteristic function
gives,

φ(k) =
∫

P (x)eikxdx =
∞∑
n=0

(ik)n〈xn〉

n!
. (5.1)

The cumulants Knare implicitly defined as,

φ(k) ≡ exp

[
∞∑
n=0

(ik)nKn

n!

]
. (5.2)

Expansion with respect to k yields the relation between cumulants and moments,

Kn+1 = 〈xn+1〉 −
n∑
j=1

( n

j

)
〈xj〉Kn+1−j. (5.3)

The normalized cumulants we use are defined as the n’th cumulant divided by the
n’th moment. The first three normalized cumulants are given by,

〈〈T 〉〉 =
〈T 〉

〈T 〉
= 1

〈〈T 2〉〉 =
〈T 2〉 − 〈T 〉2

〈T 〉2

〈〈T 3〉〉 =
〈T 3〉 − 3〈T 〉〈T 2〉+ 2〈T 〉3

〈T 〉3
, (5.4)

where double angular brackets denote the normalized cumulants. The n’th cumulant
expresses a correlation in the n’th moment that is irreducible, i.e. that cannot be
expressed in products of lower order moments. For instance, all the moments of a
Gaussian distributed quantity about a mean unequal zero are unequal zero, while
only the first and second cumulant are unequal zero.

5.2.2 Overview

Let us first give an overview of the present experimental and theoretical results on
the distribution of transmission coefficients. The theoretical transmission coefficient
Tab follows initially an exponential (Rayleigh) distribution[51] (see also section 3.1
and Eq. (3.5)), while for large transmission coefficients a stretched exponential has
been found experimentally[11] and theoretically[10]. The distribution has a relative
variance 〈δT 2ab〉/〈Tab〉

2 ≈ 1, with δTab = Tab − 〈Tab〉.
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The total transmission is obtained by summing over all outgoing modes N ,
Ta =

∑
b Tab ∼ �/L. Naively one would expect for the distribution function P (Ta)

a convolution of N independent Rayleigh distributions that for large N becomes
a Gaussian distribution with relative variance 1/N (see section 3.2). However, the
interference between two light paths inside the sample correlates outgoing modes[52],
which was the subject of the previous two chapters. This results in an increase of
the relative variance by a factor L/�. The distribution of the total transmission,
based on the first and second cumulant (i.e. the average and the variance) only, is
by definition Gaussian[10, 66],

P (Ta) ∼ exp

[
−

1

2

(Ta − 〈Ta〉)2

〈δT 2a 〉

]
, (5.5)

with relative variance 〈δT 2a 〉/〈Ta〉
2 ∼ L/N�.

The conductance is given by summing over all incoming and outgoing modes,
g ≡

∑
a,b Tab ∼ N�/L with relative variance 〈δg2〉/〈g〉2 ∼ 〈g〉−2[52, 8]. In electronic

systems Altshuler et al. [12] predicted a distribution of the conductance P (g), with
the n’th normalized cumulant 〈〈gn〉〉 (i.e. the n’th cumulant over 〈g〉n) proportional
to 〈g〉2−2n. In the metallic regime (i.e. for large values of the average conductance)
the distribution is predominantly Gaussian. To our knowledge, neither the mea-
surement of the conductance distribution in the metallic regime, nor of the total
transmission distribution of optical systems has been reported.

5.2.3 Experimental distribution

We measured the fluctuations in the total transmission using the set-up described
in detail in the previous chapter. The samples consisted of T iO2 particles in air,
with an absorption length �a � 70 µm. The mean free path � for all samples was
� 0.8 µm. In the experiment the thickness of the samples and the width of the
incident Gaussian beam were varied to measure the fluctuations for different values
of g. Table 5.1 lists the thickness of the samples, the width of the beam, and the
number of scans over which was averaged to obtain the probability distribution and
the second and third cumulant.

Fig. (5.1) shows the measured distribution function summed over all samples
and beam widths to improve the statistics. Before summing the probability distri-
butions of the scans the second cumulant of each scan was scaled to unity (FWHM is
2
√

2 ln 2). The upper part of Fig. (5.1) shows the full distribution function, the solid
line is the Gaussian of Eq. (5.5). The lower half of the graph shows the difference
between the measured distribution and the Gaussian distribution, smoothed over
half a unit of the x-axis. The predicted effect of a third cumulant is shown by the
solid line. Scaling the second cumulant to unity fixes its zero crossings, its vertical
scale relates to the magnitude of the third cumulant. The shape of the δP (Ta) curve
clearly demonstrates the presence of a third cumulant in the measured distribution.
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Figure 5.1: Probability distribution of the fluctuations in total transmission,
summed over all samples after scaling the normalized second cu-
mulant to unity. Upper graph: Full distribution. Solid line is a
Gaussian, completely determined by the normalized second cumu-
lant that was scaled to unity. Lower graph presents the difference
between the measured distribution and the Gaussian. The solid line
shows a fit of the contribution expected from a third cumulant to
the difference with the magnitude on the y-scale as only adjustable
parameter.

5.2.4 The second and third cumulant

The distribution is characterised by a second cumulant and a small but significant
third cumulant, that both need to be calculated. The normalized second cumulant
is

〈〈T 2a 〉〉 ≡
〈T 2a 〉 − 〈Ta〉

2

〈Ta〉2
∼

L

N�
. (5.6)

Double brackets define normalized cumulants. The second moment of the intensity
distribution contains a disconnected (Fig. (5.2a)) and a connected part (Fig. (5.2b)).
The connected part (Fig. (5.2b)) contains the interference between two diffusons (at



5.2. Distributions 83

Figure 5.2: Diagrams contributing to the second moment of the fluctuations on
the total transmission. Diffusons (diffuse propagating intensities)
are depicted by close parallel lines. Incoming and outgoing fields
are not drawn. (a) Two disconnected diffusons. (b) Two diffusons
interfering inside the sample. This is the leading contribution to
the second cumulant.

a Hikami vertex[58]) and is proportional to L/N�[52], which is the leading con-
tribution to the second cumulant. The contribution to the second cumulant of the
disconnected part is proportional to 1/N , the naively predicted variance on the total
transmission.

The diagrams contributing to the third moment are given in Fig. (5.3). From
their structure the contribution to the third cumulant of the diagrams in Figs. (5.3a),
(5.3b), and (5.3c) are seen to be of the order of respectively 1/N2, L/N2�, and
L2/N2�2. The leading contribution to the third cumulant of the intensity distri-
bution comes from the connected diagrams (Fig. (5.3c)). The factor L2/N2�2 can
be interpreted as the probability that three light paths will interfere twice, just as
L/N� gives the probability that two light paths will interfere once. As important
result a quadratic relation between the second and the third normalized cumulant
is found,

〈〈T 3a 〉〉 ∝ 〈〈T
2
a 〉〉
2. (5.7)

Later the prefactor of this quadratic relation will be determined. To verify the
predicted quadratic relation between the second and third cumulant, we plot in
Fig. (5.4) the third cumulant versus the second cumulant for each value of the
conductance, i.e. for each value of the sample thickness and beam diameter (the
mean free path was the same for all samples). The error bars were obtained from
the variance in the second and third cumulant within a set of scans with the same
sample thickness and beam width. The second and third cumulant are averaged
over sets of 16, 32, 48 or 64 scans. The resulting values and their standard errors
are given in Table 5.1. The expected standard error of a third cumulant due to
finite sampling can be estimated to be (15/Np)

1/2〈〈T 2a 〉〉
3/2 [68], with Np the number

of points in a scan (1024) times the number of scans. The experimental error bars
on the third cumulant are in good agreement with the expected magnitude of the
standard error.
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Figure 5.3: The diagrams contributing to the third moment of the fluctuations
on the total transmission. Incoming and outgoing fields are not
drawn. (a) Three disconnected diffusons. (b) Two interfering diffu-
sons and a disconnected diffuson. (c+d) Three interfering diffusons,
in diagram (c) through two Hikami vertices, in diagram (d) through
a six-point vertex. The diagrams in (c) and (d) are the leading con-
tributions to the third cumulant.

5.2.5 The non-linear least squares fit

The solid line in Fig. (5.4) is a weighted non-linear least squares fit to the data of,

〈〈T 3a 〉〉 = α〈〈T 2a 〉〉
β. (5.8)

The optimum value of the fit parameters α and β is found by minimising the χ2

merit function,

χ2 =
∑
i

(yi − αxβi )2

σ2i
, (5.9)

with yi the third cumulant, xi the second cumulant, and σi the variance of the third
cumulant. This results in χ2minimum = 9.0, α = 0.7 and β = 1.83.

The statistical tools to determine the error on the fit parameters and to test
a linear, a quadratic, and a cubic relation between the second and third cumulant
are found in Bevington[69]. A fit is considered ”good” when the minimum value
of χ2 is approximately equal to the degrees of freedom. The degrees of freedom
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Figure 5.4: The third cumulant as a function of the second cumulant of the
intensity distribution. Solid line is weighted least squares fit to the
data of 〈〈T 3a 〉〉 = α〈〈T 2a 〉〉

β. The insert shows the 68% confidence
region of the fit parameters α and β, yielding α = 0.7 +6.0/−0.7,
β = 1.83 ± 0.26. Dashed line is theoretical prediction 〈〈T 3a 〉〉 =
3.2〈〈T 2a 〉〉

2. Dots show the upper bound of the contribution of the
mundane diagram in Fig. (5.3b) to the third cumulant.

ν is the number of data points (12) minus the number of fit parameters (2), ν =
10. Important for determining the confidence region of the fit parameters is the
Probability Integral of the χ2-distribution Pχ(χ2, ν). It describes the probability
that a random set of N data points would yield a value of χ2 as large or larger when
compared with the parent function. So given the parent function (determined by
fixed values of α and β) and its resulting value for χ2 the probability integral of the
χ2-distribution gives the probability to measure this data set or one that would fit
the parent function worse.

First we calculate the probability that we would have measured our data set
provided the parent function is linear,

〈〈T 3a 〉〉 = α〈〈T 2a 〉〉. (5.10)

The minimum value of χ2 is 34.1 with α = 3.7× 10−4. The Probability Integral of
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Sample Beam Num- Second Third Number Number
thick- width ber of cumu- cumu- of of
ness L ρ0 scans lant lant modes modes

(in µm) (in µm) (×10−4) (×10−7) N N∗

30 77 16 0.36 ±0.01 0.014 ±0.035 388000 193000
12 26 32 0.97 ±0.03 −0.03 ±0.25 46900 23300
22 32 48 1.24 ±0.04 0.68 ±0.28 88700 43500
30 33 16 1.57 ±0.04 1.30 ±0.46 119000 57300
53 35 32 1.80 ±0.03 0.91 ±0.53 241000 112000
30 26 32 1.90 ±0.03 0.92 ±0.56 95000 45000
45 33 32 1.90 ±0.05 1.33 ±0.43 187000 87600
53 26 32 2.18 ±0.03 1.77 ±0.59 208000 94500
170 27 32 2.69 ±0.06 2.02 ±0.82 1415000 632000
78 28 64 2.74 ±0.03 2.43 ±0.62 396000 177000
30 17 16 4.82 ±0.10 9.1 ±3.3 72000 33000
30 10 32 8.01 ±0.36 5.3 ±6.4 60300 26700

Table 5.1: Sample parameters in the experiment. The number of modes N
and N∗ are defined in respectively Eq. (5.13) or Eq. (B.32) and
Eq. (5.18) or Eq. (B.38).

the χ2-distribution Pχ(34.1, 11) = 3.5×10−4, which means that provided the parent
function is linear, the probability to have measured our data set is 0.035 %.

If the parent function is quadratic,

〈〈T 3a 〉〉 = α〈〈T 2a 〉〉
2, (5.11)

the minimum value of χ2 is 10.0 with α = 2.94. The Probability Integral of the
χ2-distribution Pχ(10.0, 11) = 0.53, which means that provided the parent function
is quadratic, the probability to have measured our data set is 53 %.

If the parent function is cubic, the probability to have measured our data set
is 0.003%. From this analysis we concluded that the quadratic relation is clearly the
most likely, which is in good agreement with the predicted quadratic relation.

For the parent function of a fractional power (Eq. (5.8)),

〈〈T 3a 〉〉 = α〈〈T 2a 〉〉
β, (5.12)

the 68% confidence region of the simultaneous fit parameters α and β is found by
searching the value of χ2 for which the Probability integral Pχ(χ2, ν) is 0.32, in our
case Pχ(χ2 = 11.5, ν = 10) = 0.32. The contour of constant χ2 = 11.5 gives the
68% confidence region for the parameters α and β, and is shown in the insert of
Fig. (5.4). The errors on α and β as given by the contour are respectively α = 0.7
+6.0/ − 0.7, β = 1.83 ±0.26, and the predicted quadratic relation lies well within
the confidence region of the experimentally determined power.
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5.3 The prefactor of the second versus the third

cumulant

Assuming a quadratic relation between the second and third cumulant we try to
find the prefactor in Eq. (5.7). A fit of the quadratic behaviour (β = 2) yields a
prefactor α = 2.9. The 68% confidence region of the fit parameter α is found by
searching the value of χ2 for which the Probability integral Pχ(χ2, ν) is 0.32, in this
case Pχ(χ2 = 12.6, ν = 11) = 0.32 (the minimum value for χ2 is 10.0, for α = 2.93).
This results in α = 2.9± 0.6.

To calculate the prefactor of the quadratic relation between the second and
third cumulant an explicit calculation of the diagrams in Figs. (5.2b) and (5.3c)
has to be done that includes the incident Gaussian profile of the beam, Iinc(r⊥) ∼
exp(−2r2⊥/ρ

2
0). The details of the calculation are presented in Appendix B. We need

the number of modes (independent speckle spots) in transmission. In chapter 3 it
was shown to be given by Eq. (3.16) and Eq. (3.20) for an incident Gaussian beam
profile,

N ≡ 2 ×
k20I

2(q = 0)∫ ∞
0

2qI(q)I(−q)dq
, (5.13)

with k0 the wave vector of the light and I(q) the Fourier transform of the intensity
profile at the exit interface of the sample. In Appendix B it is proven that with this
definition of the number of modes the contribution of the diagram in Fig. (5.2a)
to the second cumulant is exactly 1/N . The factor 2 distinguishes the vector wave
(2 = 2) from the scalar wave (2 = 1) results[57]. In the limit ρ0  L the number
of modes N is not influenced by the diffuse broadening of the incident profile, N =
2k20ρ

2
0/4. In this limit the conductance g = 4N�/3L is given by

g =
2k20ρ

2
0�

3L
. (ρ0  L) (5.14)

The results for the second cumulant (Fig. (5.2b)) are well known[52, 8, 70] and give
(see also Eq. (3.70)),

〈〈T 2a 〉〉 =
2L

2k20ρ
2
0�

=
2

3
g−1. (ρ0  L) (5.15)

In Fig. (5.3c) we present the third cumulant, the first diagram contains two Hikami
four-point vertices, the second a six-point vertex. In the calculation the six-point
vertex is found to cancel against the extra contribution of the first diagram that
arises when the distance between the two Hikami vertices is of the order of one
mean free path. The third cumulant depends in a non-trivial manner on the beam
profile. For the incident Gaussian profile we find (see Appendix B)

〈〈T 3a 〉〉 =
64L2

2 2 5k40ρ
4
0�
2

=
64

45
g−2. (ρ0  L) (5.16)



88 The distribution of the total transmission

(For a square profile the result would be 16/15g2). This gives the following simple
relation between the second and third cumulant,

〈〈T 3a 〉〉 =
16

5
〈〈T 2a 〉〉

2. (5.17)

The experimentally observed prefactor of 2.9 ± 0.6 is in good agreement with the
theoretical value of 16/5.

5.3.1 Contributions of experimental artefacts

Let us now estimate corrections to the leading contributions of the second and
third cumulant and the influence of the experimental beam width ρ0 ∼ L. The
correction to the leading contribution of the second cumulant is given by the diagram
in Fig. (5.2a), yields 1/N (see Appendix B) and can be neglected. The correction to
the leading contribution of the third cumulant comes from the diagram in Fig. (5.3b),
that gives an extra contribution to the measured third cumulant of ∆〈〈T 3a 〉〉 ≤
6× 〈〈T 2a 〉〉/N

∗. The factor of six is of combinatorial origin and the effective number
of modes N∗ is given by

N∗ � 2 ×
k20I(q = 0)∫ ∞
0

2qI(q)dq
. (5.18)

The proof of the estimate on the upper bound of ∆〈〈T 3a 〉〉 is given in Appendix B.
Table 5.1 gives the number of modes N∗ for each sample and each incident beam
width (2 = 2). The resulting upper bound of the contribution of the diagram in
Fig. (5.3b) to the measured third cumulant is shown in Fig. (5.4) by the dots. Since
the upper bound of the correction is small, the measured third cumulant is nearly
completely the effect of the interference process in Fig. (5.3c).

The magnitudes of the second cumulant as calculated with the experimental
parameters as input are larger than the measured values by maximally 25 %. This
difference was addressed in chapter 4, where it was shown to be caused by the finite
range over which the wavelength was varied in the experiment. For the same reason
the experimental values of the third cumulant are also lower than predicted. By
plotting the second versus the third cumulant (Fig. (5.4)) the effects of the finite
scan length largely cancel, as do effects of inaccuracies in the exact beam width,
mean free path, and sample thickness.

The influence of the beam width was numerically evaluated for the diagrams
of Figs. (5.2b) and (5.3c). The resulting relation between the second and third
cumulant remained quadratic, only the prefactor of 16/5 was reduced by at most
14% for the smallest value of ρ0/L. If this reduction were included in the theory it
would make the agreement with the observed prefactor even better.

In conclusion, we showed experimentally that the probability distribution of
the fluctuations in total transmission is predominantly Gaussian. The data clearly
demonstrate a skewness of the probability distribution, caused by correlation in the
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cubed intensity. These correlations were calculated within a diagrammatic approach,
and a good agreement is found between the experiment and the theory. Recently
the full distribution function of the total transmission has been calculated[71] that
confirms the theoretical result for the second and third cumulant presented here.
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Chapter 6

Non-linear disordered media

6.1 Correlation in transmission and reflection

6.1.1 Introduction

In this chapter we present theoretical and experimental results of the leading order
angular correlations of second harmonic light generated inside a random medium,
for both the transmission and reflection geometries.

Many of the interesting linear multiple scattering effects have their non-linear
equivalent. We will investigate the interference effects of second harmonic light, gen-
erated by a non-linear susceptibility of the scattering particles. The samples consist
of slabs of small LiNbO3 particles, which have a very high non-linear susceptibility.
The fundamental light is multiply scattered by these particles, but a small part of
the fundamental light is converted to second harmonic light. The second harmonic
(SH) light is also multiply scattered by the particles. The multiply scattered SH
light generated at different particles does interfere, and a speckle pattern is observed
in transmission and reflection. The interest in interference effects of SH light was
first raised by theoreticians. For instance, Agranovich and Kravtsov calculated the
enhanced backscattering peak for second harmonic light, and found its magnitude
to be much smaller than in the linear optics case[14, 15].

In this chapter we present both theoretical and experimental results for the
leading angular correlations (C(1)) of the second harmonic light generated inside
random media, for both the transmission and reflection geometries. In contrast to
the enhanced backscattering peak which is much reduced for second harmonic light,
the C(1) correlation function remains a quantity of order unity. We find generally
good agreement between theory and experiment. As we shall see, the correlation
properties in the nonlinear optics regime exhibit richer and more complex features,
as they result from the multiple scattering of both the second harmonic and the
fundamental light, as well as the randomness in the second harmonic light generation
process inside a powder-like random medium containing nonlinear crystallites. The
above mentioned non-linear effects in multiple scattering are unique to optics and do
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not have an easily accessible counterpart in electronic wave transport systems. The
phase coherent nature in the second harmonic light generation is also distinct from
that in the generation and propagation of light in random media with luminescent
centres. In the latter case the pump light excites radiating transitions that do not
in general have a well defined relative phase relation as long as stimulated radiation
effects can be ignored. As a consequence, speckle patterns do not form, in contrast
to the second harmonic generation that we study here.

6.2 Theory

We will first describe the theoretical results briefly. In a poly-crystalline powder
sample, the small crystallites are responsible for generation of second harmonic
light, as well as for multiple scattering of both the fundamental and generated
second harmonic light. For convenience in theoretical treatment, we assume the
sample has a waveguide geometry, with a crosssectional area A corresponding to
the area of illumination in the experiment. N = 2πA/λ2 (Eq. (3.21)) corresponds
to the number of propagating modes (which we label by α), and equals the number
of independent speckle spots in the far field that can be observed. The intensity
transmission and reflection coefficients Tαβ and Rαβ respectively, give the fraction
of the power in the incoming mode α that is coupled to the outgoing mode β.

6.2.1 Correlation in the fundamental light

The lowest order correlation function (C(1)) in transmission in linear optics, defined
as the leading contribution to Cαβα′β′ = 〈δTαβδTα′β′〉/〈Tαβ〉2, with δTαβ = Tαβ −
〈Tαβ〉, has been calculated previously, giving the result (neglecting surface reflection
effects and absorption) [8] and Eq. (3.43),

C
T (1)
αβα′β′(∆q⊥αL) =

[
∆q⊥αL

sinh(∆q⊥αL)

]2
× δ∆q⊥α,∆q⊥β . (6.1)

The triangular brackets denote an ensemble average over the disorder, L is the
length of the sample (thickness of the slab in the experiment), q⊥ is the transverse
wave vector for a given waveguide mode (incoming or outgoing direction in the
experiment), and the condition ∆q⊥α = q⊥α−q⊥α′ represents the “memory effect”.

It can be shown that for reflection the C(1) correlation function in the one-
mode-in-one-mode-out geometry is given by the square of the enhanced backscat-
tering intensity function [3, 4, 72], which takes the form

C
R(1)
αβα′β′(∆q⊥α, �, L) =

[
(L + 2τ0)cosech(∆q(L + 2τ0))

∆q(�L + τ0L− 2τ0� + 2τ 20 − 2�2)
×

{
cosh(∆q(L + 2τ0))−∆q� sinh(∆q(L + 2τ0))

1− (∆q�)2
−
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(1 + (∆q�)2) cosh(∆qL)− 2∆q� sinh(∆qL)

(1− (∆q�)2)2

}]2
× δ∆q⊥α,∆q⊥β . (6.2)

This expression is taken from Ref. [73]. Corrections due to internal reflection are
accounted for by τ0, τ0 = �(2 + 6C2)/(3 − 6C1), as described by Zhu, Pine and
Weitz[39], where C1 and C2 are constants determined by the average refractive index
of the medium. It is crucial to include the surface effects for the reflection geometry,
as the main contribution to the CR(1) correlation function comes from scattering
paths that are only a few transport mean free paths � long. This is reflected by
the scaling variable ∆q⊥α� for this function. For the transmission geometry, the
average path length s ∼ L2/�, which gives rise to the scaling variable ∆q⊥αL, so
that surface effects are not so important. Thus we may use the simplest boundary
condition to calculate the CT (1) correlation function, as we have done in Eq. (6.1).

6.2.2 Correlation in the second harmonic light

We turn now to the calculation of the leading (C(1)) correlation function for the
second harmonic light. The physical picture for this correlation function is the
following [14, 15]: The fundamental light, which is impinging on the surface of
the sample at z = 0 from a direction characterized by q⊥α, propagates inside the
sample while suffering multiple scattering, thus setting up a sample specific speckle-
like random amplitude (electrical field function) Eω(r). Second harmonic light is
generated on the randomly placed (and oriented) micro-crystallites, described by a
source function,

S2ω(r, t) =
∫
V
χ2(r− r1, t− t1; r− r2, t− t2) : [Eω(r1, t1)× E(r2, t2)]dr1dt1dr2dt2,

(6.3)
where the tensor field χ2(r) describes the random nonlinear susceptibility of the
crystalline powder and the integral is taken over the volume of one particle. This
randomly generated second harmonic light then propagates throughout the sample,
also being multiply scattered by the disordered powder sample. The reflected and
transmitted 2ω light in the far field then exhibits a speckle pattern whose correlations
we must calculate.

The diagram for calculating the average SH intensity is given in Fig. (6.1a).
The corresponding diagram for the C(1) correlation function is given in Fig. (6.1b).
Upon evaluating these diagrams, we obtain for the correlation functions for both
the transmission geometry as well as the reflection geometry, defined as C

T,SH (1)
αβα′β′ =

〈δT SHαβ δT SHα′β′〉/〈T
SH
αβ 〉

2 and C
R,SH (1)
αβα′β′ = 〈δRSHαβ δR

SH
α′β′〉/〈R

SH
αβ 〉

2, the following simple
analytical form:

C
T,SH (1)
αβα′β′ (∆q⊥αL) =

[
3

sinh2(∆q⊥αL)
−

6

∆q⊥αL sinh(2∆q⊥αL)

]2
× δ2∆q⊥α,∆q⊥β .

(6.4)
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Figure 6.1: (a) Feynman diagram for the ensemble average second harmonic
intensity transmission and reflection coefficients 〈T SHαβ 〉 and 〈R

SH
αβ 〉.

(b) Diagram for the leading order (C(1)) correlation function for
the second harmonic light, 〈δT SHαβ δT SHα′β′〉 or 〈δR

SH
αβ δR

SH
α′β′〉. Dashed

lines connect a series of identical scatterers.

C
R,SH (1)
αβα′β′ (∆q⊥αL) =

[
tanh(∆q⊥αL)

∆q⊥αL

]2
× δ2∆q⊥α,∆q⊥β . (6.5)

In calculations leading to the above results an integration over the position of the
SH sources S2ω is performed. In transmission the simplest boundary conditions can
be used for the same reason as in the transmission case for the fundamental light.
In deriving Eq. (6.5) we have put τ0 = 0, which amounts to the neglect of surface
effects. As Berkovits showed recently[74], a non-zero τ0 should be included for finite
size samples, leading to the expression,

C
R,SH (1)
αβα′β′ (∆q⊥α, �, L) = δ2∆q⊥α,∆q⊥β ×[

L3 sinh[∆q⊥α(L− 2τ0)](sinh2[∆q⊥ατ0] + sinh2[∆q⊥α(L− τ0)])

∆q⊥α sinh2[∆q⊥αL] cosh[∆q⊥αL]((L− τ0)4 − τ 40 )

]2
. (6.6)

As the ratio L/τ0 increases, the surface corrections become less important, and
Eq. (6.6) converges to Eq. (6.5). In this limit the correlation in reflection is a pure
bulk effect. This leads to a striking difference between the SH and the fundamental
(linear) correlations in the reflection geometry: The SH correlation in reflection
(Eq. (6.5)) depends, to first approximation, only on the product of the thickness L

and the transverse wave vector change ∆q⊥α; whereas the fundamental correlation
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Figure 6.2: Experimental set up for recording the angular speckle fluctuations
in transmission and reflection. The sample and the detectors can
rotate independently over 360 degrees. PMT: Photo multiplier (for
detecting SH speckles); PD: Photo diode (for detecting fundamental
light speckles).

in reflection (Eq. (6.2)) is dominated by ∆q⊥α�. In transmission the halfwidth
of the SH correlation is half the halfwidth of the fundamental (linear) correlation,
while both show an exponential decay with ∆q⊥L. Although it is hard to predict
the absolute yield of SH light in a random sample, one can easily predict the ratio
of the SH intensity in transmission over the SH intensity in reflection because the
unknown prefactor is divided out. The ratio 〈T SHαβ 〉/〈R

SH
αβ 〉 is approximately 1/3 for

large L/τ0, upon evaluating the diagram in Fig. (6.1a) for both the transmission and
reflection geometries (corresponding to the ∆q⊥ → 0 limit in the calculation of the
correlation functions). This is an interesting theoretical result which was however
not experimentally investigated.

6.3 Experiment

6.3.1 Experimental set-up

The experimental set-up is shown schematically in Fig. (6.2). A Spectra Physics
3800 Nd:YAG laser was used, giving 90 ps pulses at 1064 nm with a repetition rate
of 82 Mhz and an average power of 11 Watt. A pulsed laser system was used because
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Sample �(ω) �(2ω)
Thickness 1064 nm 532 nm
L (in µm) (in µm) (in µm)

27 1.9 1.1
38 3.7 3.2
65 3.4 2.5

Table 6.1: Values of the mean free paths for the wavelength of 1064 nm (fun-
damental) and 532 nm (second harmonic) for each sample used in
our measurement.

Second Harmonic Generation is a non-linear process and SH yield is proportional to
the average of the laser power squared. The beam was chopped and focused to 560
µm on the sample. The sample was prepared by suspending LiNbO3 powder, ob-
tained through milling a single crystal, in chloroform. Particle sizes range between
0.1 and 5 µm. The suspension was then spread on a 2 mm thick quartz window, and
after evaporation of the chloroform, its thickness was determined microscopically.
Sample thicknesses were 27, 38 and 65 µm. The infrared contribution was separated
from the detected SH signal by absorption filters placed in front of the photo mul-
tiplier tube, that suppressed the fundamental light by more than a factor of 1016.
The transmission of the filters for the SH light was more than 40%. The second har-
monic light was detected by a Hamamatsu R585 photo multiplier tube, with a dark
count of approximately 0.4 cps. The photo multiplier tube was operated in photon
counting mode. The count signal was sent to a digital (i.e. pulse count) lock-in
detector to eliminate any contributions of ambient light to the signal. The average
SH intensity was about 15 counts per second. The signal was accumulated for 5 sec.
at each point in an angular scan. The intensity at the fundamental frequency was
measured simultaneously by a photodiode. The detectors can be rotated indepen-
dently from the sample, with an accuracy of 18 µrad and 43 µrad respectively for the
detectors and the sample. The sample-holder was placed on two translation stages,
one to position the sample surface exactly over the rotation axis, and the other to
translate the sample perpendicular to the incoming beam to probe different areas
of the sample when making multiple scans of the same sample. To ensure detection
of only one outgoing mode, polarisers were placed in front of the detectors, and the
solid angles seen by the photo detectors for the fundamental and the SH light were
chosen to be smaller than the solid angle of a single speckle spot. The fluctuating
intensity in transmission was recorded as a function of the angle of rotation of the
sample. In the reflection measurements the detectors were also rotated to satisfy
∆q⊥α = ∆q⊥β (linear) or 2 × ∆q⊥α = ∆q⊥β (SH). Fig. (6.3) shows a typical Sec-
ond Harmonic speckle pattern as observed in transmission by rotating the sample.
From these scans the (experimental) short-range (C(1)) correlation functions were
computed.

The mean free path of each sample was determined by measuring the total
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Figure 6.3: Typical second harmonic speckle pattern in transmission, observed
as a function of sample rotation. Sample thickness is 38µm.

(linear) transmission coefficient between 1100 nm and 500 nm wavelength, with a
Fourier transform infrared spectrometer, using the formula 〈T 〉 = 2�/(Lslab + 2�) [9]
or equivalently Eq. (2.165) with τ0 = �. The value τ0 = � in Eq. (2.165) results from
internal reflections because of the mismatch in refractive index of the disordered
medium and the surrounding medium (air) [38, 75, 39]. The mean free paths for
the different samples that are used for the computation of the correlation in the
reflection geometry are given in Table (6.1).

6.3.2 Results

Both in transmission and reflection we were able to observe a clear speckle pattern
in the SH light. Fig. (6.4) shows the measured correlation function in transmission
for the SH and the fundamental light, together with their respective theoretical
curves (from Eqs. (6.1) and (6.4)). The experimental correlation functions were
averaged over six to eight scans. The thickness of each sample was determined by
fitting the theory to the experimental curves (the only adjustable parameter). The
values found agreed within the experimental accuracy of the microscopic thickness
determination. We observe that the agreement between theory and experiment is
excellent.



98 Non-linear disordered media

Figure 6.4: Fundamental and second harmonic correlation in transmission as
a function of sample rotation. Symbols: experimental data for
� : L = 27µm, e: L = 38µm, 3 : L = 65µm, with L the
thickness of the sample. Smooth lines: theoretical curves.

Fig. (6.5) shows the measured correlation function in reflection for the SH
and the fundamental light, together with their respective theoretical curves (from
Eq. (6.2) and Eq. (6.6)). The experimental data were averaged over eight to ten
scans. The thicknesses of the samples used in the theory are obtained from the
transmission experiment. The different theoretical curves for the fundamental cor-
relation reflect their strong dependence on the mean free path, obtained from the
total transmission and given in Table (6.1). A fit of the only free parameter τ0 in
Eq. (6.2) to the fundamental reflection data gave τ0 ≈ 2.4�, which was used as input
for Eq. (6.6). The value of τ0 results in n ≈ 1.5 [39], a surprisingly high value in
view of the average refractive index of the T iO2 samples in chapter 4. The different
theoretical curves for the SH correlation are close together, reflecting their scaling
behaviour with ∆qL.

In Fig. (6.4) and Fig. (6.5), the second data point of all experimental curves
was normalized to one, rather than the first point, because all the high frequency
auto-correlation noise is accumulated in the first point C(∆q⊥ = 0). The experi-
mental data for reflection are in good agreement with the theory. The relative RMS
fluctuations, defined as the square root of C(∆q⊥ = 0) were between 0.7 and 0.9
for all measurements. The small deviation from the theoretically expected value of
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Figure 6.5: Fundamental and second harmonic correlation in reflection as a
function of sample rotation. The detectors are rotated at twice
the angle of the sample rotation. Symbols: experimental data for
� : L = 27µm, e: L = 38µm, 3 : L = 65µm, with L the thickness
of the sample. Lines: theoretical curves for the respective sample
thicknesses.

unity for this quantity may be attributed to the heating of the sample by the intense
fundamental beam, which made the static disorder slightly unstable.

6.4 Conclusion

In conclusion, we have studied both theoretically and experimentally for the first
time the leading contribution (C(1)) to the correlation properties in SH light gen-
erated inside a random sample, and shown that the measurements are in good
agreement with our theoretical results. The measurements clearly demonstrate the
different scale dependence of the SH and fundamental correlation in reflection. The
correlations in reflection of the second harmonic light scales with the sample thick-
ness L, in contrast to the corresponding short-range correlation function in reflection
of the fundamental light in the linear scattering regime, which scales with mean free
path �.
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Appendix A

A diagrammatic approach

A.1 Long-range correlation

In this appendix the long-range correlation in transmission is calculated in a dia-
grammatic approach. The appendix is based on lectures given by Th. M. Nieuwen-
huizen[76] and worked out by the participants[77]. The core of the long-range cor-
relation is the Hikami vertex, first calculated by Gor’kov[78] and Hikami[58]. The
calculation of the Hikami-vertex here is in the second order Born approximation.
For results beyond the second order Born approximation, see [55]. The calculations
are presented here to show that the Langevin approach gives the same result as
the diagrammatic approach, and because the results obtained here are needed in
Appendix B to calculate the cumulants of the total transmission.

The correlation in transmission is given in Eq. (3.35) or Eq. (3.47), with the
lowest order expansion of the vertex K given in Eq. (3.36). The expansion of the ver-
tex K is discussed in more detail. The vertex K contains all diagrams in which two
amplitudes and their complex conjugate interact. Only paired amplitudes (intensity
propagators) survive the averaging process. Correlation between intensity propa-
gators occurs when two paired amplitudes interact. In Fig. (A.1) the three basic
diagrams of which K consists are drawn. In the first diagram the two paired am-
plitudes travel through the medium without interaction, leading to the short-range
correlation. The second diagram shows the exchange of one amplitude between the
two paired amplitudes, giving the long-range correlation, and in the last diagram the
two paired amplitudes exchange an amplitude that later is exchanged again, giving
back the original two pairs of amplitudes. The last diagram is responsible for the
Universal Conductance Fluctuations on the conductance of disordered samples, the
optical analog of the conductance fluctuations observed in mesoscopic electronic sys-
tems. The core of the diagrams leading to the long-range correlation and the UCF is
the part where the amplitudes are exchanged (in physical terms: where amplitudes
interfere). This exchange part, the Hikami-vertex, is calculated in the second order
born approximation ,Eq. (2.33). The leading part of the Hikami-vertex in the second
order Born approximation is given by the diagrams in Fig. (A.2). The diagrams are
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Figure A.1: The decomposition of the vertex K into the most important dia-
grams. In the first diagram two intensities propagate through the
medium without interaction. In the second diagram the two inten-
sities exchange an amplitude. The last diagram shows the exchange
of an amplitude and the subsequent exchange back. The diagrams
are responsible for respectively the short-range and long-range cor-
relation on the transmission and the optical analog of the Universal
Conductance Fluctuations (UCF). In the text diagram b is denoted
by H4(ra1, ra3; rb, rb′)

calculated for an infinite medium. In real space the diagram of Fig. (A.2) with the
Ladder vertices connected is given by,

H4(ra1, ra3; rb, rb′) =
∫ ∞
−∞

dr1 · · ·dr4 L(ra1, r1)L(r2, rb)L(ra3, r3)L(r4, rb′)

G(r1−r2)G
∗(r3−r2)G(r3−r4)G

∗(r1−r4), (A.1)

where H4(ra1, ra3; rb, rb′) denotes the diagram in Fig. (A.1b) where the incoming
and outgoing propagators in a slab geometry have to be connected to. In the above
integral L(ra1, r1) and L(ra3, r3) are the Ladders that propagate intensity to r1,3, and
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Figure A.2: The exchange process of an amplitude in Fig. (A.1) in more detail.
To get the correct expression for the Hikami vertex in the second
order Born approximation three diagrams need to be calculated.
The first is a product of four Green’s functions. In the second and
the third diagram the diagram is dressed with an extra scatterer.
It turns out that the first diagram completely cancels against part
of the second and third diagram.

L(r2, rb) and L(r4, rb′) are the Ladders that propagate intensity from r2,4. The prod-
uct of the four amplitude propagators (GGG∗G∗) is the bare Hikami-vertex, the top
diagram in Fig. (A.2). The diagrams are most easily calculated in p-space. To that
end the Ladders and the Green’s functions in the following Fourier representation
are substituted in Eq. (A.1),

L(pa,p1) =
∫

L(ra−r1)e
iparaeip1r1dradr1 = L(−p1)(2π)3δ(pa+p1), (A.2)

L(ra,p1) = L(−p1)e
ip1ra; L(p2, rb) = L(p2)e

ip2rb. (A.3)

Substituting the Fourier representation into Eq. (A.1) leads to,

H4(ra1, ra3; rb, rb′) =∫ ∞
−∞

L(ra1,p1)L(p2, rb)L(ra3,p3)L(p4, rb′)e
−ip1r1−ip2r2−ip3r3−ip4r4

G(q1)G
∗(q2)G(q3)G

∗(q4)e
−iq1 (r1−r2)−iq2 (r2−r3)−iq3 (r3−r4)−iq4 (r4−r1)

dp1 · · ·dp4dr1 · · ·dr4dq1 · · ·dq4
(2π)3×8

. (A.4)
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In Eq. (A.4) we separate out the Hikami vertex in the Fourier representation,

H4(ra1, ra3; rb, rb′) =∫ ∞
−∞

L(ra1,p1)L(p2, rb)L(ra3,p3)L(p4, rb′)H(p1,p3;p2,p4)
dp1 · · ·dp4

(2π)12
, (A.5)

with the Hikami vertex in the Fourier representation,

H(p1,p3;p2,p4) =
∫ ∞
−∞

e−ip1r1−ip2r2−ip3r3−ip4r4 G(q1)G
∗(q2)G(q3)G

∗(q4)

e−iq1 (r1−r2)−iq2 (r2−r3)−iq3 (r3−r4)−iq4 (r4−r1)
dr1 · · ·dr4dq1 · · ·dq4

(2π)12
. (A.6)

A.1.1 The Hikami-vertex

We will calculate the Hikami-vertex H(p1,p3;p2,p4) in momentum space. Integra-
tion over r1,2,3,4 gives the following delta functions,

∫
dr1 → δ(p1 + q1−q4)(2π)3 q4 → q q1 = q−p1∫
dr2 → δ(p2 + q2−q1)(2π)3 q2 = q−p1−p2∫
dr3 → δ(p3 + q3−q2)(2π)3 q3 = q−p1−p2−p3∫
dr4 → δ(p4 + q4−q3)(2π)3 q4 = q−p1−p2−p3−p4

⇒ p1 + p2 + p3 + p4 = 0,

where q4 was renamed q. Note that q is a free momentum now, and that the other
momenta (q1,2,3) are fixed. The integration over the momenta q in Eq. (A.6) gives,

H(p1,p3;p2,p4) = (2π)3δ(p1 + p2 + p3 + p4)×∫ dq

(2π)3
G(q−p1)G

∗(q+ p3 + p4)G(q+ p4)G
∗(q). (A.7)

The above term is the top of the three diagrams in Fig. (A.2), which we label as
H1, H2 and H3, with H(p1,p3;p2,p4) = (2π)3δ(p1 + p2 + p3 + p4)(H1+ H2+ H3).
H1 is given by,

H1 =
∫

dq

(2π)3
G(q−p1)G

∗(q + p3 + p4)G(q+ p4)G
∗(q). (A.8)

First H1, H2 and H3 are calculated in the limit pi → 0. With the help of the useful
integrals Ik,l, which are given in Appendix A.2, we find,

H1(pi → 0) = I2,2 + O(p2i ) =
�3

8πk2
+ O(p2i ), (A.9)
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where k is the length of the wave vector in the medium. Next the diagrams with
one extra scatterer are given, H2 en H3.

H2 = nt2
∫

dq

(2π)3
G(q−p1)G

∗(q)G(q + p4)
∫

dq′

(2π)3
G(q′−p3)G

∗(q′)G(q′ + p2),

(A.10)

H3 = nt∗2
∫

dq

(2π)3
G∗(q−p4)G(q)G∗(q+ p3)

∫
dq′

(2π)3
G∗(q′−p2)G(q′)G∗(q′ + p1).

(A.11)
Both diagrams are split in two products, with in each part a free momentum. The
calculation of H2 and H3 in the limit pi → 0 yields,

H2(pi = 0) = nt2I22,1 ≈ nt2
−�4

64π2k2
≈

t

t∗
−�3

16πk2
, (A.12)

H3(pi = 0) = nt∗2I21,2 ≈ nt∗2
−�4

64π2k2
≈

t∗

t

−�3

16πk2
. (A.13)

In the second order Born approximation one has:

t = V + iV 2
E

4πc
, � =

4π

nV 2
, Re

t

t∗
= 1. (A.14)

With this one finds,

H2(0) + H3(0) =
−�3

8πk2
, (A.15)

and thus,
H1(0) + H2(0) + H3(0) = 0 + O(p2). (A.16)

The leading term in the first diagram (H1) cancels completely against the leading
term of the second and third diagram! The diagrams have to be calculated up to
order p2. To this end G(q−p) is approximated up to order p2 by a Taylor expansion
around p = 0.

G(q−p) =
1

(q−p)2 + µ2
=

1

q2 + µ2−2q · p+ p2
≈

G(q) + (2q · p−p2)G2(q) + 4(q · p)2G3(q) + O(p3), (A.17)

where µ is defined in Appendix A.2. Use the following approximation for the third
term in the right hand side of Eq. (A.17),

∫
dq(q · p)2Gn(q)G∗m(q) ≈

1

3
p2k2

∫
dqGn(q)G∗m(q). (A.18)

The factor 1/3 originates from the averaging over the angle in the inner product,
q2 → k2 because that is the pole in the integral that gives the most important con-
tribution. A second approximation is made, that is not immediately obvious. The
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second factor −p2G2(q) in the second term of the r.h.s. of Eq. (A.17) is neglected
because it gives a contribution in lower order of the mean free path than the other
terms. The first factor 2(q · p)G2(q) of the second term is 0 after integration over
q because the integrand is asymmetric in q. Terms that do not cancel are products
of the second term: (2q · pi)(2q · pj). These contributions are approximated in the
same way as is done in Eq. (A.18), where terms asymmetric in qi give 0. What
remains is,

∫
dq (q · pi)(q · pj)G

n(q)G∗m(q) ≈
1

3
k2 (pi · pj)

∫
dqGn(q)G∗m(q). (A.19)

With the help of the Ik,l integrals in Appendix A.2 the diagrams H1(pi) · · ·H3(pi)
are calculated up to order p2,

H1(pi) =
�3

8πk2
−

�5

24πk2
(p21 + p22 + p23 + p24 + p1p3 + p2p4),

H2(pi) =
t

t∗

(
−�3

16πk2
+

�5

48πk2
(p21 + p22 + p23 + p24 − p1p4−p2p3)

)
,

H3(pi) =
t∗

t

(
−�3

16πk2
+

�5

48πk2
(p21 + p22 + p23 + p24−p1p2−p3p4)

)
. (A.20)

Adding up the contributions of the first, second and third diagram and using
Eq. (A.14) we find the Hikami vertex in the symmetric form,

H(p1,p3;p2,p4) = (2π)3δ(p1 + p2 + p3 + p4)
3∑
j=1

Hj(pi) =

(2π)3δ(p1 + p2 + p3 + p4)
−�5

96πk2
(2p1p3 + 2p2p4 − p

2
1 − p

2
2 − p

2
3 − p

2
4). (A.21)

Using the momentum conservation δ(p1+p2+p3+p4) Eq. (A.21) may be simplified
into the equivalent asymmetric forms,

3∑
j=1

Hj(pi) =
−�5

48πk2
(2p1p3 − p

2
2 − p

2
4) =

−�5

48πk2
(2p2p4 − p

2
1 − p

2
3). (A.22)

The p2 terms in the Hikami vertex lead to double derivatives in a real space represen-
tation of the Hikami vertex. The double derivative with respect to r of the Ladder
in Eq. (2.162) leads essentially to a δ-function. This means that the p2 terms only
give a contribution near the slab boundaries, were the incoming intensity is coupled
to the Ladders. The main contribution of the Hikami vertex is in the bulk of the
medium, and for the moment the boundary contributions (i.e. the p2 terms) are
neglected. The Hikami vertex becomes,

3∑
j=1

Hj(pi) =
−�5

24πk2
(p1 · p3) =

−�5

24πk2
(p2 · p4). (A.23)
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A.1.2 The long-range correlation function

We will use the expression for the Hikami vertex in Eq. (A.23) to calculate the long
range correlation. Substituting Eq. (A.23) in the expression for the ladders attached
to the Hikami vertex in Eq. (A.4) gives,

H4(ra1, ra3; rb, rb′) =
∫ ∞
−∞

L(ra1,p1)L(p2, rb)L(ra3,p3)L(p4, rb′)

δ(p1 + p2 + p3 + p4)
−�5

24πk2
(p1 · p3)

dp1 · · ·dp4
(2π)3×3

. (A.24)

For the slab geometry the most convenient form of the above equation is in (z,p⊥)
coordinates. Substituting the following forms of the Ladder into Eq. (A.24),

L(ra,p1) =
∫

L(za, z1,−p⊥1)e
ip⊥1r⊥aeipz1z1dz1;

L(p2, rb) =
∫

L(z2, zb,p⊥2)e
ip⊥2r⊥beipz2z2dz2, (A.25)

leads to,

H4(ra1, ra3; rb, rb′) =∫
L(za1, z1,−p⊥1)L(z2, zb,p⊥2)L(za3, z3,−p⊥3)L(z4, zb′ ,p⊥4)

eip⊥1r⊥a1eipz1z1eip⊥2r⊥beipz2z2eip⊥3r⊥a3eipz3z3eip⊥4r⊥b′eipz4z4

δ(p1 + p2 + p3 + p4)
−�5

24πk2
(p1 · p3)

dp1 · · ·dp4, dz1· · ·dz4
(2π)3×3

. (A.26)

By partial integration and neglecting the stok terms (that give a small contribution
at the boundaries) the Hikami vertex is rewritten as,

−�5

24πk2
(p1 · p3)→

�5

24πk2

[
∂

∂z1

∂

∂z3
− p⊥1 · p⊥3

]
, (A.27)

where the derivatives work only on the Ladders. Integration over pz1 and subsequent
integration over pz2 , pz3 and pz4 gives three δ-functions on the z coordinates. We
integrate over the z1, z2 and z3 coordinates and substitute z1 → z. Since the total
transmission is sought we integrate over the transversal coordinates r⊥b and r⊥b′ ,
which gives two δ-functions of p⊥2 and p⊥4. Integration over p⊥2, p⊥3 and p⊥4
gives the intermediate result,∫

H4(ra1, ra3; rb, rb′)dr⊥bdr⊥b′ =

�5

24πk2

∫ [
L′(za1, z,−p⊥1)L(z, zb)L

′(za3, z,p⊥1)L(z, zb′) +

p⊥
2
1L(za1, z,−p⊥1)L(z, zb)L(za3, z,p⊥1)L(z, zb′)

]

eir⊥a1p⊥1−ir⊥a3p⊥1
dp⊥1dz

(2π)2
, (A.28)
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where L′ denotes the derivative of L with respect to z. The sources that are con-
nected to H4(ra1, ra3; rb, rb′) to give the interference term of the correlation are,

Saa′ωω′(ra1) =
∫

Ψa(ra1, ω)Ψ∗a′(ra1′ , ω
′)δ(ra1−ra1′)dra1′ =

�

(2π)4

∫
Ψaω(q⊥1)Ψ

∗
a′ω′(q⊥1 + ∆q⊥1)e

ir⊥a1∆q⊥1δ(zi−za1)dq⊥1d∆q⊥1;

Saa′ωω′(ra3) =
∫

Ψ∗a(ra3, ω)Ψa′(ra3′ , ω
′)δ(ra3−ra3′)dra3′ =

�

(2π)4

∫
Ψ∗aω(q⊥2)Ψa′ω′(q⊥2 + ∆q⊥2)e

−ir⊥a3∆q⊥2δ(zi−za3)dq⊥2d∆q⊥2, (A.29)

where the injection source Eq. (2.144) and the plane wave decomposition of the
incoming amplitudes Eq. (3.49) was used with the injection depth zi = �. Attaching
the sources to the Ladders in Eq. (A.28), integrating over ra1 and ra3, using Eq. (3.64)
and employing the emission drain Eq. (2.161) by substituting for zb and zb′ the
emission depth ze gives the fluctuations on the total transmission,

〈δT 2(∆ω)〉aa′ =
∫

Saa′ωω′(ra1)Saa′ωω′(ra3)H4(ra1, ra3; rb, rb′)×

�2δ(zb−ze)δ(zb′−ze)

(16π)2
dra1dra3drbdrb′ =

�9

24πk2(16π)2

∫ [
L′(zi, z,∆q⊥1)L(z, ze)L

′(zi, z,−∆q⊥1)L(z, ze) +

∆q⊥
2
1L(zi, z,∆q⊥1)L(z, ze)L(zi, z,−∆q⊥1)L(z, ze)

]

e−ρ
2
0(∆q1⊥−∆qa⊥)

2/4 d∆q⊥1dz

(2π)2
. (A.30)

Before performing the integration over z the explicit form of the Ladders is given. As
can be seen from the sources in Eq. (A.29) the amplitudes travelling along the two in-
coming Ladders develop a phase difference because of their frequency difference with
opposite sign, i.e. they are each others complex conjugate. The approximate form
of the Ladders in the slab geometry chosen in the calculation is given in Eq. (2.162),

L(zi, z,p⊥) =
4πvE
�2D Q

sinh [(zi + τ0) Q] sinh [(L− z − τ0) Q]

sinh [L Q]
,

L(zi, z,−p⊥) =
4πvE
�2D Q∗

sinh [(zi + τ0) Q
∗] sinh [(L− z − τ0) Q

∗]

sinh [L Q∗]
,

with Q =
(
p⊥
2 +

1

Dτa
−

i∆ω

D

)1/2
, Q∗ =

(
p⊥
2 +

1

Dτa
+

i∆ω

D

)1/2
. (A.31)

In the Hikami vertex two amplitudes are exchanged between the Ladders, and the
frequency difference between the amplitudes in the outgoing Ladders vanishes. The
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outgoing Ladders are given by,

L(z, ze) =
4πvE
�2D Q

sinh [(z + τ0) Q] sinh [(L− ze − τ0) Q]

sinh [L Q]
,

with Q =
(

1

Dτa

)1/2
. (A.32)

The derivation of the Hikami vertex was for scalar waves. The vector character of
the light is taken into account by dividing the final expression for the correlation
on the total transmission by a factor of two since the two independent directions of
polarization effectively doubles the number of independent modes in transmission.
After the integration over z and some elaborate but straightforward manipulations
the correlation on the total transmission is found,

C2(∆q⊥a,∆ω) =
〈δT 2(∆ω)〉aa′

〈Ta〉2
=

3L

2k2ρ20�
F2(∆ω), (A.33)

with

F2(∆ω) ≡
∫

d∆q1⊥
4π

ρ20 e
−ρ20(∆q1⊥−∆qa⊥)

2/4

L(cosh[2Lγ1]− cos[2Lγ2])
×

(
γ1 sinh[2Lγ1]

γ21 − k2a
−

γ2 sin[2Lγ2]

γ22 + k2a
−

ka sinh[2Lka]

γ21 − k2a
−

ka sinh[2Lka]

γ22 + k2a

)
, (A.34)

with γ1 ≡ (a2+b2)1/4 cos(φ/2), γ2 ≡ (a2+b2)1/4 sin(φ/2), a ≡ ∆ω/D, b ≡ ∆q 21⊥+k2a,

ka ≡
√

1/Dτa and tanφ ≡ a/b. The result is completely equal to the result obtained

through the Langevin approach in section 3.4.2. The total transmission 〈Ta〉 in
Eqs. (A.33,A.34) is given by,

〈Ta〉 =
�2

16π
L(zi, ze) =

3

4�L
(zi + τ0)(L− ze − τ0). (A.35)

The attentive reader might suggest that there exists another diagram that con-
tributes to the fluctuations on the total transmission. The sources in Eq. (A.29)
could be chosen such that the incoming Ladders have no frequency difference, and
the outgoing Ladders have a frequency difference after the exchange of an amplitude
in the Hikami vertex. However outgoing Ladders with a frequency difference do not
contribute to the total transmission. The outgoing propagator that transports the
intensity outside the slab in Eq. (2.155) has an extra oscillating term e±i∆ω|r

′|/c, with
r′ outside the medium, that makes the net contribution to the total transmission
zero.

A.2 Useful integrals

We introduce a few integrals and definitions that simplify the calculation of the
Hikami vertex.

Ik,l =
∫

dq

(2π)3
Gk(q)G∗ l(q), with
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G(q) =
1

q2−k20−nt
=

1

q2 + µ2
; G∗(q) =

1

q2 + µ̄2
, (A.36)

and µ2 = −k20−nt(E), µ = −ik+1/(2�) (see Eq. (2.59)). µ̄ is the complex conjugate
of µ. The choice of the sign is arbitrary, the sign of µ̄ is fixed by the choice of the
sign of µ. Thus µ̄ = ik + 1/(2�). The choice of the sign determines the position
of the poles in the complex plane, but does not influence the result of the contour
integration. The simplification is that once you know I1,1, Ik,l is calculated with the
help of,

Ik+1,l =
−1

2kµ

d

dµ
Ik,l ; Ik,l+1 =

−1

2lµ

d

dµ
Ik,l. (A.37)

We need I1,1.

I1,1 =
∫

dq

(2π)3
G(q)G∗(q) =

∫ ∞
∞

dq

(2π)2
q2

(q2 + µ2)(q2 + µ̄2)
. (A.38)

This integral is performed by contour integration. Assume Im t(E) > 0. The sum
of the residues gives 1/4π(µ + µ̄). We need the following equation,

µ + µ̄ =
1

�
. (A.39)

At the last equal signs the optical theorem Eq. (2.44) and Eq. (2.61) without ab-
sorption were used. Using Eq. (A.39) the expressions for the following integrals are
found,

I1,1 =
1

4π(µ + µ̄)
=

�

4π
; I2,2 =

1

8πµµ̄(µ + µ̄)3
≈

�3

8πk2

I1,2 =
1

8πµ̄(µ + µ̄)2
≈
−i�2

8πk
; I2,1 =

1

8πµ(µ + µ̄)2
≈

i�2

8πk

I1,3 =
1

16πµ̄2(µ + µ̄)3
≈
−�3

16πk2
; I3,1 =

1

16πµ2(µ + µ̄)3
≈
−�3

16πk2

I2,3 =
3

32πµ1µ̄2(µ + µ̄)4
≈
−3i�4

32πk3
; I3,2 =

3

32πµ2µ̄1(µ + µ̄)4
≈

3i�4

32πk3

I1,4 =
1

32πµ̄3(µ + µ̄)4
≈

i�4

32πk3
; I4,1 =

1

32πµ3(µ + µ̄)4
≈
−i�4

32πk3

I2,4 =
1

16πµµ̄3(µ + µ̄)5
≈
−�5

16πk4
; I4,2 =

1

16πµ3µ̄(µ + µ̄)5
≈
−�5

16πk4

I3,3 =
3

32πµ2µ̄2(µ + µ̄)5
≈

3�5

32πk4
. (A.40)
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Appendix B

The second and third cumulant of
the total transmission

In this appendix the second and third cumulant of the total transmission will be
calculated. The calculations are done for scalar waves. The effect of the vector
character of light is implemented heuristicly and indicated by 2 , 2 = 1 gives the
scalar waves result, 2 = 2 gives the heuristic vector waves result. All calculations
are done in the plane wave limit, which means that the incoming beams have a
Gaussian intensity profile, with the diameter of the beam much larger than the
sample thickness, ρ0  L.

B.1 The conductance

First we will derive an expression for the conductance. The conductance is defined
as the sum over all incoming and outgoing modes (see Eq. (3.23)),

g ≡
∑
a,b

〈Tab〉. (B.1)

The sum over all outgoing modes b gives the total transmission (Eq. (A.35)),

〈Ta〉 =
�2

16π
L(zi, ze) =

vE

4DL
(zi + τ0)(L− ze − τ0). (B.2)

The conductance is the number of incoming modes N times the average total trans-
mission,

g = N〈Ta〉. (B.3)

Since all incoming modes are excited (the light falls on the sample from all directions)
the injection depth zi is not equal to � as in Eq. (2.144), but equal to 2�

3
, as derived

for the ejection depth ze in Eq. (2.160). The ejection depth ze is given in Eq. (2.161).
The position of the trapping plane is taken to be τ0 = 2�

3
. The number of incoming

modes is given in Eq. (3.18),

N =
2k20ρ

2
0

4
. (B.4)
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Figure B.1: The two diagrams contributing to the second moment. Diagram b)
is the leading contributions to the second cumulant.

For the conductance we derive,

g =
4N�

3L
=

2k20ρ
2
0�

3L
; (ρ0  L) (B.5)

B.2 The second cumulant

The calculation of the second cumulant was done in Appendix A and is given by
Eq. (A.33) and Eq. (A.34) in the limit ∆q⊥ → 0, ∆ω → 0 and ρ0  L or directly
by Eq. (3.70). In Eq. (A.33) and Eq. (3.70) the vector character of light was taken
into account,

〈〈T 2a 〉〉 =
2L

2k2ρ20�
=

2

3
g−1. (B.6)

B.3 The third cumulant

The third cumulant is given by the sum of diagram c) and d) in Fig. (B.2), respec-
tively H6c and H6d. Only diagram c) is explicitly calculated.

H6c(ra1, ra3, ra5; rb2, rb4, rb6) =∫ ∞
−∞

L1(ra1,p1)L3(ra3,p3)H(p1,p3;p2,p7)L2(p2, rb2)Lint(p7,p8)L5(ra5,p5)

H(p5,p8;p4,p6)L4(p4, rb4)L6(p6, rb6)
dp1 · · ·p8
(2π)3×8

, (B.7)

The incoming and outgoing intensity propagators have to be connected to H6c in a
slab geometry. The ladders are given in Eq. (A.3). Lint denotes the intensity that
propagates from the first to the second Hikami-vertex. The calculation is similar to
what is done in Appendix A after Eq. (A.24) and the details will be skipped. The
asymmetric form of the Hikami vertex (Eq. (A.22)),

H(p1,p3;p2,p4) = (2π)3δ(p1 + p2 + p3 + p4)
−�5

48πk20
(2p2p4 − p

2
1 − p

2
3). (B.8)
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Figure B.2: The four diagrams contributing to the third moment. Diagrams c)
and d) are the leading contributions to the third cumulant. Dia-
gram d) cancels completely against the contribution of diagram c)
when the two Hikami-vertices approach one other within one mean
free path. In the text diagram c) is denoted by H6c and diagram
d) by H6d.

and Eq. (A.2) are used,

Lint(p7,p8) = Lint(p7)(2π)3δ(p7 + p8). (B.9)

The δ-functions give conditions on the momenta p. As shown in Appendix A the
integration over all outgoing modes makes the transverse momenta of the outgoing
Ladders L2, L4 and L6 zero. Together with the conditions on the momenta by the
δ-functions this leads to a condition on the incoming transverse momenta,

p⊥2 = p⊥4 = p⊥6 = 0

δ(p5+p8+p4+p6) ⇒ p⊥5 = −p⊥8
δ(p7+p8) ⇒ p⊥7 = −p⊥8

δ(p1+p3+p2+p7) ⇒ p⊥1 + p⊥3 + p⊥5 = 0 (B.10)

Connecting the sources (Eq. (A.29)) to H6c(ra1, ra3, ra5; rb2, rb4, rb6) leads to a prod-
uct of ladder vertices that depend on the incoming transverse momenta times a
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weight function of the incoming transverse momenta that comes from the sources.
This is seen in Eq. (A.30), the part of the integrand in square brackets is the product
of ladder vertices that depend on the incoming transverse momenta, the exponen-
tial function is the weight function of the incoming transverse momenta that come
from the sources. Here we simplify the calculation by separating the weight func-
tion from the product of Ladder vertices. This is justified in the plane wave limit
ρ0  L. Then the weight function decays much faster than the Ladder vertices as
a function of the transverse momenta and the Ladder vertices are evaluated at zero
transverse momentum. The fluctuating part of the third moment from the diagram
in Fig. (B.2c) is,

〈δT 3a 〉c =

(
�

16π

)3 ∫
Sa(ra1)Sa(ra3)Sa(ra5)Hc(ra1, ra3, ra5; rb2, rb4, rb6)

δ(zb2−ze)δ(zb4−ze)δ(zb6−ze)dra1dra3dra5drb2drb4drb6. (B.11)

where the sources Sa are given in Eq. (A.29), and the factors �δ(zb−ze)
16π

come from the
ejection drain (Eq. (2.161)). Writing symbolically the separation of the weight func-
tion and the Ladders with zero transverse momentum we get (all the r⊥ dependence
has been swept into the sources),

〈δT 3a 〉c = H6c(zi, zi, zi; ze, ze, ze)×(
�

16π

)3 ∫
S(ra1)S(ra3)S(ra5)dra1dra3dra5drb2drb4drb6 (B.12)

The integration over the weight function gives,(
�

16π

)3 ∫
S(ra1)S(ra3)S(ra5)dra1dra3dra5drb2drb4drb6 =

(
�2

16π

)3 ∫
Ψ(q⊥1)Ψ

∗(q⊥1+p⊥1)Ψ(q⊥3)Ψ
∗(q⊥3+p⊥3)Ψ(q⊥5)Ψ

∗(q⊥5+p⊥5)

(2π)2δ(p⊥1+p⊥3+p⊥5)
dq⊥1dq⊥3dq⊥5dp⊥1dp⊥3dp⊥5

(2π)2×6
=

(
�2

16π

)3
4

3ρ40π
2

(B.13)

H6c(zi, zi, zi; ze, ze, ze) is given by,

H6c(zi, zi, zi; ze, ze, ze) =∫
L1(zi, z1)L3(zi, z3)H(z1, z3; z2, z7)L2(z2, ze)Lint(z7, z8)

L5(zi, z5)H(z5, z8; z4, z6)L4(z4, ze)L6(z6, ze)dz1 · · ·dz8 (B.14)

where the following choice for the asymmetric Hikami vertex with zero transverse
momenta in the real space representation was made,

H(p1,p3;p2,p4)→ H(z1, z3; z2, z4) =
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δ(z1−z2)δ(z1−z3)δ(z1−z4)
�5

48πk2

[
2

∂2

∂z2∂z4
−

∂2

∂z21
−

∂2

∂z23

]
(B.15)

The derivatives do only work on the ladder vertices and not on the δ-functions
We make the same approximation as in Appendix A. The double derivatives on
incoming and outgoing Ladder vertices give a δ-function on the slab boundary and
these terms are neglected (this the same as the neglect of the q2 terms as argued
after Eq. (A.22)). The only double derivative retained is the one working on the
internal Ladder Lint that connects the two Hikami vertices. H6c(zi, zi, zi; ze, ze, ze)
consists of two parts,

H6c =

(
�5

48πk2

)2 ∫ {
4L1(zi, z1)L3(zi, z1)L

′
2(z1, ze)L

′
int(z1, z2)×

L5(zi, z2)L
′
4(z2, ze)L

′
6(z2, ze) +

2L1(zi, z1)L3(zi, z1)

[
12π

�3
∂

∂z1
δ(z1 − z2)

]
L′2(z1, ze)×

L5(zi, z2)L4(z2, ze)L6(z2, ze)

}
dz1dz2. (B.16)

The L′ denote the derivative of L. The δ-function in the second term of the integrand
comes from the double derivative of the internal Ladder,

∂2

∂z28
Lint(z7, z8) = −

12π

�3
δ(z7 − z8) (B.17)

Performing the integration of terms gives,

H6c =

(
�5

48πk2

)2 (
12π

�3

)7 (
4�

3

)6 (
8

45L
+

2

15L

)
. (B.18)

Three permutations of the diagram in Fig. (B.2c) exists, plus their complex conju-
gate, giving six possible diagrams. Multiplying H6c by six gives the contribution to
the normalized third cumulant,

〈〈T 3a 〉〉c =
12L2

�2k4ρ40

(
16

15
+

4

5

)
. (B.19)

As was shown in van Rossum, de Boer and Nieuwenhuizen [79] the contribution of
the six point vertex H6d (diagram d in Fig. (B.2)) cancels exactly against the second
term of the integrand in Eq. (B.16).

〈〈T 3a 〉〉d = −
12L2

�2k4ρ40

4

5
(B.20)

In words, the contribution of the six point vertex H6d cancels against the diagram
with the two Hikami vertices when the two Hikami vertices overlap (or approach one
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another within a mean free path). The vector character of the light is taken into
account by dividing the third cumulant calculated for scalar waves by a factor of 2
for each Hikami vertex (note that the second cumulant was reduced by a factor of
2 for a single Hikami vertex). Thus the third cumulant is given by,

〈〈T 3a 〉〉 = 〈〈T 3a 〉〉c + 〈〈T 3a 〉〉d =
12L2

2 2�2k4ρ40

16

15
=

64

45
g−2 (B.21)

Finally this gives us the relation between the second and third cumulant that was
experimentally observed in chapter 5,

〈〈T 3a 〉〉 =
16

5
〈〈T 2a 〉〉

2 (B.22)

B.4 Disconnected contribution to the cumulants

So far the leading contributions to the second and third cumulant have been calcu-
lated. There are also non-leading contributions to the second and third cumulant.
The diagrams of Fig. (B.1) and Fig. (B.2) give all contributions to respectively the
second and third moment. The leading contributions to the second and third cumu-
lant are given by the connected diagrams in Fig. (B.1b) and Figs. (B.2c and B.2d)
respectively. However, the diagram in Fig. (B.1a) gives an additional contribution
to the second cumulant, just as the diagrams of Figs. (B.2a and B.2b) give an addi-
tional contribution to the third cumulant. We will first explain the contribution of
Fig. (B.1a) to the second cumulant and the contribution of Figs. (B.2a and B.2b)
to the third cumulant in the waveguide model of section 3.2. The second cumulant
is given by

〈〈T 2a 〉〉 =
〈T 2a 〉 − 〈Ta〉

2

〈Ta〉2
. (B.23)

The second moment 〈T 2a 〉 is split into a connected part (〈T 2a 〉con, Fig. (B.1b)) and a
disconnected part (〈T 2a 〉dis, Fig. (B.1a)). As was shown in Eq. (3.29) of section 3.2 the
disconnected part 〈T 2a 〉dis is not equal to the averaged transmission squared 〈Ta〉2

(disconnected means in the context of section 3.2 independent outgoing modes).
Using Eq. (B.6) (the contribution of the connected part to the second cumulant)
and Eq. (3.29) we find,

〈〈T 2a 〉〉 = 〈〈T 2a 〉〉con + 〈〈T 2a 〉〉dis ∝
L

N�
+

1

N
(B.24)

where the last term comes from the disconnected part of Fig (B.2a). Extending the
argument in section 3.2 to three transmission coefficients, and taking into account
that two transmission coefficients can be correlated and their contribution to the
fluctuations is enhanced by L/�, we can estimate the contribution to the third
cumulant of the diagrams of Figs. (B.2d + B.2c, B.2b and B.2a), yielding respectively

〈〈T 3a 〉〉 ∝
L2

N2�2
+

L

N2�
+

1

N2
, (B.25)
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Figure B.3: a) The disconnected contribution to the second moment, the am-
plitudes making up the intensity at r⊥1 and r⊥2 propagate out in
different directions.
b) The mundane (disconnected) contribution to the third cumulant,
the box symbolises the Hikami vertex. The amplitudes making up
the intensities at r⊥1, r⊥2 and r⊥3 propagate out in different direc-
tions.

Especially the second term from Fig. (B.2b) needs to be evaluated under the ex-
perimental conditions to prove that the experimentally measured third cumulant
is dominated by the contribution of Figs. (B.2c and B.2d), and not the mundane
contribution of Fig. (B.2b).

B.4.1 The disconnected contribution to the second cumu-
lant

To calculate the disconnected contribution to the second cumulant, only the intensity
distribution at the exit interface at transversal coordinates r⊥1 and r⊥2 is needed.
The amplitudes, making up the intensity at r⊥1 and r⊥2, can propagate in different
directions, respectively p⊥1, p⊥2, p⊥3 and p⊥4 (see Fig. (B.3a)).

I(ze, r⊥1;p⊥1,p⊥2)I(ze, r⊥2;p⊥3,p⊥4) ≡

Ψ(r⊥1)e
ip⊥1r⊥1Ψ∗(r⊥1)e

−ip⊥2r⊥1Ψ(r⊥2)e
ip⊥3r⊥2Ψ∗(r⊥2)e

−ip⊥4r⊥2 . (B.26)

To obtain intensities the amplitudes need to be paired giving the following possibil-
ities

a) p⊥1 = p⊥2,p⊥3 = p⊥4; b) p⊥1 = p⊥4,p⊥2 = p⊥3. (B.27)

To get the contribution to the second moment of the total transmission, first one
integrates over the transversal coordinates r⊥1 and r⊥2 to get the contribution of
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the whole exit interface to the intensity in a certain direction, then one integrates
over all directions to get the total transmission. The first possible pairing of the
amplitudes a) gives

〈I(ze;p⊥1)I(ze;p⊥3)〉 =∫
dr⊥1dr⊥2〈Ψ(r⊥1)Ψ

∗(r⊥1)〉〈Ψ(r⊥2)Ψ
∗(r⊥2)〉 = 〈I(ze;q⊥ = 0)〉2, (B.28)

where I(ze;p⊥1,p⊥2) is equivalent to JA(p⊥1,p⊥2) in Eq. (3.7). Here I(ze;p⊥1,p⊥2)
is defined on the exit interface of the sample. Subsequent integration over all out-
going directions results in

a) 〈T 2a 〉 = π2k40〈I(ze;q⊥ = 0)〉 = 〈Ta〉
2. (B.29)

The second possible pairing of the amplitudes b) gives

〈I(ze;p⊥1)I(ze;p⊥2)〉 =∫
dr⊥1dr⊥2〈Ψ(r⊥1)Ψ

∗(r⊥1)〉〈Ψ(r⊥2)Ψ
∗(r⊥2)〉e

ir⊥1(p⊥1−p⊥2)e−ir⊥2(p⊥1−p⊥2) =

〈I(ze;q⊥)〉〈I(ze;−q⊥)〉 with q⊥ = p⊥1 − p⊥2 (B.30)

Subsequent integration over the outgoing directions p⊥1 and p⊥3 yields,

b) 〈T 2a 〉 = πk20

∫ k0

0
dq⊥2πq⊥〈I(ze;q⊥)〉2. (B.31)

The integration boundary can be extended to infinity since I(ze;q⊥) is an exponen-
tially decaying function. The contribution of the disconnected diagram (Fig. (B.1b))
to the second cumulant comes only from part b),

〈〈T 2a 〉〉dis =
πk20

∫ ∞
0

2πq⊥〈I(ze;q⊥)〉2dq⊥

2π2k40〈I(ze;q⊥ = 0)〉
≡

1

N
(B.32)

The factor 2 in the denominator has been added to make the result apply to vector
waves as well. This is the proof of Eq. (5.13). For a Gaussian incoming beam
Eq. (B.32) is exactly equal to the result in Eq. (3.16) with Eq. (3.20). This number
of modes is the number of independent speckle spots in transmission, derived from
the intensity distribution at the exit interface. For the experimental beam diameters
and sample thicknesses the number of modes are tabulated in Table (5.1).

B.4.2 The disconnected contribution to the third cumulant

We will apply the same method to estimate the contribution of the diagram in
Fig. (B.2b) to the third cumulant. As can be seen in Fig. (B.3b) there are three
possibilities to combine three intensities into two connected intensities (through a



B.4. Disconnected contribution to the cumulants 119

Hikami vertex) and an independent intensity. Connecting outgoing directions to the
amplitudes at the exit interface gives (see Fig. (B.3b),

I(ze, r⊥1;p⊥1,p⊥2)I(ze, r⊥2;p⊥3,p⊥4)I(ze, r⊥3;p⊥5,p⊥6) ≡

Ψ(r⊥1)e
ip⊥1r⊥1Ψ∗(r⊥1)e

−ip⊥2r⊥1Ψ(r⊥2)e
ip⊥3r⊥2Ψ∗(r⊥2)e

−ip⊥4r⊥2 ×

Ψ(r⊥3)e
ip⊥5r⊥3Ψ(r⊥3)e

−ip⊥6r⊥3 (B.33)

There are six possibilities to combine the outgoing directions into intensities,

1) p⊥1 = p⊥2,p⊥3 = p⊥4,p⊥5 = p⊥6 2) p⊥1 = p⊥4,p⊥3 = p⊥2,p⊥5 = p⊥6
3) p⊥1 = p⊥2,p⊥3 = p⊥6,p⊥5 = p⊥4 4) p⊥1 = p⊥6,p⊥3 = p⊥4,p⊥5 = p⊥2
5) p⊥1 = p⊥4,p⊥3 = p⊥6,p⊥5 = p⊥2 6) p⊥1 = p⊥6,p⊥3 = p⊥2,p⊥5 = p⊥4

Integrating over the transversal coordinates r⊥1, r⊥2 and r⊥3 gives the following six
contributions of the diagram in Fig. (B.2b) to the third moment,

1) Ic(ze; 0)Ic(ze; 0)I(ze; 0)

2) Ic(ze;q⊥)Ic(ze;−q⊥)I(ze; 0) with q⊥ = p⊥1 − p⊥3
3) Ic(ze; 0)Ic(ze;q⊥)I(ze;−q⊥) with q⊥ = p⊥3 − p⊥5
4) Ic(ze;q⊥)Ic(ze; 0)I(ze;−q⊥) with q⊥ = p⊥1 − p⊥5
5) Ic(ze;q⊥1)Ic(ze;q⊥2)I(ze;q⊥3) with q⊥1 = p⊥1 − p⊥5,q⊥2 = p⊥3 − p⊥1,

q⊥3 = p⊥5 − p⊥3
6) Ic(ze;q⊥1)Ic(ze;q⊥2)I(ze;q⊥3) with q⊥1 = p⊥1 − p⊥3,q⊥2 = p⊥3 − p⊥5,

q⊥3 = p⊥5 − p⊥1, (B.34)

where Ic(ze,q⊥) denotes the connected intensity. The contribution of three discon-
nected intensities in Fig. (B.2a) to the third moment can be written down immedi-
ately by making the substitution Ic(ze,q⊥)→ I(ze,q⊥) in Eq. (B.34),

1) I(ze; 0)I(ze; 0)I(ze; 0)

2) 3× I(ze; 0)I(ze;q⊥)I(ze;−q⊥)

3) 2× I(ze;q⊥1)I(ze;q⊥2)I(ze;q⊥3)

The third cumulant is defined as,

〈〈T 3a 〉〉 =
〈T 3a 〉 − 3〈Ta〉〈T 2a 〉+ 2〈Ta〉3

〈Ta〉3
. (B.35)

If we add up all contributions to the third cumulant the result is,

〈〈T 3a 〉〉 = 〈〈T 3a 〉〉con +
1

〈Ta〉3

∫
dq⊥1dq⊥2dq⊥3

[
6Ic(ze; 0)Ic(ze;q⊥1)I(ze;−q⊥1)

+6Ic(ze;q⊥1)Ic(ze;q⊥2)I(ze;q⊥3) + 2I(ze;q⊥1)I(ze;q⊥2)I(ze;q⊥3)
]
, (B.36)
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where 〈〈T 3a 〉〉con is the contribution of the diagrams in Fig. (B.2c) and Fig. (B.2d),
and the integral contains the contribution of the disconnected diagrams in Fig.
(B.2b) and Fig. (B.2a) Now we can estimate the contribution of the disconnected
diagrams. The last term in the integrand originates from the diagram in Fig. (B.2a),
gives a contribution proportional to 2/N2 (cf. Eq. (B.25)) and can be neglected.
The second term can also be neglected, since the integrand is dominated by the
first term. An absolute upper bound on the contributions of the disconnected di-
agrams is found by approximating the first term: Ic(ze; 0)Ic(ze;q⊥1)I(ze;−q⊥1) →
Ic(ze; 0)Ic(ze; 0)I(ze;q⊥1). This is a crude approximation an should give a save upper
bound.

〈〈T 3a 〉〉dis ≤

∫
dq⊥1dq⊥2dq⊥36Ic(ze; 0)Ic(ze; 0)I(ze;q⊥1)

(πk20)
3I3(ze; 0)

=

6〈〈T 2a 〉〉con(πk20)
2
∫
I(ze;q⊥)dq⊥

(πk20)
3I(ze; 0)

(B.37)

We define a new number of modes, N∗, with

〈〈T 3a 〉〉dis ≤
6〈〈T 2a 〉〉con

N∗
; N∗ ≡

2πk20I(ze; 0)∫ ∞
0

2πq⊥I(ze;q⊥)dq⊥
(B.38)

The factor 2 in the numerator of the second term in Eq. (B.38) has been added
to make the result apply to vector waves as well. This is the proof of the estimate
above Eq. (5.18) on the contribution of the mundane (disconnected) diagram in
Fig. (5.3b) or Fig. (B.2b) to the third cumulant in the experiment. For the ex-
perimental beam diameters and sample thicknesses the number of modes N∗ are
tabulated in Table (5.1).
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Units

Symbol Unit Unit in this thesis

V (r) 1/m2 1/m2

g(r) 1/m 1/m

g(p) m2 m2

g(r1, r2) 1/m 1/m

g(p1,p2) m6 m6

tα(r1, r2, E) m−5 m−5

tα(p1,p2, E) m m

V δ(r) 1/m2 1/m2

L(r) 1/m4 1/m4

L(r, t) 1/m4s 1/m4s

H(r, t) 1/m3s 1/m3s

G(r, t) 1/ms 1/ms

G(E+, r) 1/m 1/m

G(p, E) m2 m2

V m m

Ψ(r) V s/m 1/m

ε0 J/V 2m J/m

η ≡ ε0c
2/vφ J/V 2s J/s

I(r, ŝ), I(r) η/m2 η/m2

S(r, t) V/m3 1/m3

S(r, ω) V s/m3 s/m3

S(E) V s s

[Ψ ∗Ψ∗](r, ω) V 2s/m2 s/m2

The last collomn gives the units when the units volt second of the scalar waves are

omitted, Ψ =
[

1

m

]
(See also section 2.2.1).
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Dit proefschrift behandelt de voortplanting van licht door een wanordelijke struc-
tuur. Bij een wanordelijke structuur moet je je een medium voorstellen met willekeu-
rig geplaatste obstakels. Het licht kan niet eindeloos recht door reizen, maar botst op
een gegeven moment op een obstakel. De botsing zorgt er voor dat het licht verder
reist in een andere richting, het licht wordt verstrooid. Het licht kan natuurlijk
ook geabsorbeerd worden bij de botsing, maar in dit proefschrift worden obstakels
gebruikt die het licht alleen maar verstrooien. De gemiddelde afstand die het licht
reist voordat het botst met een obstakel wordt de vrije weglengte genoemd. Als het
licht door een wanordelijke structuur reist dat vele vrije weglengten dik is, zal het
vele malen verstrooien voordat het er doorheen gekomen is. De werkelijk afgelegde
afstand is veel groter dan de hemelsbrede afstand. De manier waarop het licht zich
verspreidt wordt diffusie genoemd. Het is te vergelijken met een dronkemanswan-
deling. Zwaar beneveld door de alcohol probeert een man een brede straat over te
steken. Na elke stap verliest hij zijn evenwicht, staat weer op, en doet een nieuwe
stap in een willekeurige richting. Je kan je voorstellen dat het even duurt voordat
hij de overkant bereikt heeft. De kans dat hij überhaupt de overkant bereikt bij elke
poging de straat over te steken is slechts zijn stapgrootte gedeeld door de breedte
van de straat, afgezien van eventueel verkeer (dat hier voor een vrij gruwelijke vorm
van absorptie zorgt).

Diffusie van licht is geen exotisch verschijnsel dat alleen onder moeilijke om-
standigheden in een laboratorium optreedt. Een mooi voorbeeld uit het dagelijks
leven is een glas melk. Kleine vetbolletjes die in de melk drijven verstrooien het
licht, het licht propageert diffusief door de melk. Omdat de vloeistof en de vetbol-
letjes het licht niet absorberen, ziet de melk er wit uit. Andere voorbeelden van een
wanordelijke structuur voor licht zijn (dikke) mist en witte muurverf. Hoofdstuk 2
behandelt voornamelijk de diffuse voortplanting van licht door een laagje witte verf.

Bovenstaande beschrijving van licht is gebaseerd op een deeltjesbeeld en wordt
wel klassieke diffusie genoemd. Licht is eigenlijk een golf, een electro-magnetische
golf, en golven kunnen met elkaar interfereren. Twee golven kunnen elkaar ver-
sterken of uitdoven. Voor watergolven kun je dit waarnemen in een (zwem)bad of
afwasteiltje. Het golfkarakter van licht en de daarmee samenhangende interferentie
zorgt voor een aantal interessante verschijnselen in de voortplanting van licht door
een wanordelijke structuur. Licht is niet het enige dat een golfkarakter heeft. Elek-
tronen hebben ook een golfkarakter, net als geluidsgolven. In de quantum mechanica
worden zelfs alle deeltjes (interacties) beschreven met golffuncties. Het mag duidelijk
zijn dat interferentie een zeer veel voorkomend verschijnsel is in de natuurkunde.
Meestal wordt het optreden van veelvuldige verstrooïıng van golven gezien als de
vervuiling van een schoon systeem (in electrontransport worden verstrooïıngscentra
onzuiverheden genoemd). Wij zijn juist gëınteresseerd in deze “vuile” systemen.
Veelvuldige verstrooïıng van laserlicht in een laagje witte verf is een ideaal model-
systeem om interferentieëffecten in wanordelijke structuren te bestuderen.
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In hoofdstuk 3 worden twee interferentieverschijnselen behandelt die wij ex-
perimenteel hebben waargenomen. Het eerste verschijnsel beschrijft de interferen-
tie van licht op de detector dat langs verschillende paden door het verfmonster is
gereisd. De dronkemanswandeling zorgt er voor dat alle paden door het monster
een verschillende lengte hebben. De bijdragen van alle paden kunnen zowel de-
structief als constructief met elkaar interfereren. De waargenomen intensiteit kan
sterk variëren, en hangt af van de realisatie van padlengten. Voor een ingevroren
wanorde (de verstrooiers staan op een vaste plaats) is de waargenomen intensiteit
constant. Als echter de golflengte van het laserlicht wordt veranderd, verandert ook
de waargenomen intensiteit, omdat de fase verandert waarmee de golven, die langs
verschillende paden hebben gereisd, aankomen bij de detector. De fase verandert
omdat het aantal golflengten dat past in een pad met een bepaalde lengte anders
is geworden. Een meting van de fluctuaties in de intensiteit als functie van de
verandering van de golflengte van het laserlicht geeft informatie over de padlengte-
distributie in het monster. Een belangrijke fysische parameter, de diffusieconstante
van het licht, kan hiermee bepaald worden. Omdat de gemeten intensiteit snel ver-
andert met de verandering van de golflengte, wordt de gemeten correlatiefunctie de
korte-dracht correlatiefunctie genoemd.

Het tweede verschijnsel beschrijft de interferentie van het licht in het verfmon-
ster. Ook in het verfmonster komen golven die langs verschillende paden hebben
gereisd elkaar tegen en interfereren met elkaar. Veronderstel dat de golven con-
structief interfereren. Lokaal is de intensiteit dan hoger dan gemiddeld. Deze lokaal
hogere intensiteit reist langs verschillende paden verder door het verfmonster (ver-
spreidt zich door het monster). Het bijzondere is dat er nu samenhang (correlatie)
is ontstaan in de intensiteit in het verfmonster. De invloed van dit interferen-
tieëffect is meetbaar op de totale hoeveelheid licht die door een laagje witte verf
heen komt. Deze totale transmissie fluctueert veel langzamer met het veranderen
van de golflengte van het licht, en daarom wordt de correlatie op de totale transmissie
de lange-dracht correlatiefunctie genoemd. In hoofdstuk 3 wordt uitgerekend hoe
groot beide effecten zijn en hoe snel de gemeten intensiteit verandert met het ver-
anderen van de golflengte van het inkomende licht. Vooral het laatste effect vereist
enig rekenwerk omdat de precieze omstandigheden waaronder het experiment werd
uitgevoerd meegenomen moesten worden.

Een effect dat niet beschreven wordt in dit proefschrift is de interferentie tussen
twee golven in het monster die even verder weer met elkaar interfereren. Dit effect
is waargenomen voor elektronen in 1984, en wordt de universele geleidingsfluctu-
atie genoemd. De analogie tussen elektronen en licht (hun golfkarakter) was een
belangrijke aanleiding voor de experimenten met licht.

In hoofdstuk 4 wordt de experimentele opstelling beschreven om de fluctuaties
in de intensiteit als functie van de golflengte te meten. Vooral het meten van de
lange-dracht correlatie vereiste zorgvuldigheid, omdat de fluctuaties niet groot zijn.
De resultaten van de metingen worden uitstekend beschreven door de berekeningen
in het vorige hoofdstuk. De meting van fluctuaties op de totale transmissie was de
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eerste experimentele bevestiging van de volledige lange-dracht correlatiefunctie.
Voor hoofdstuk 5 is opnieuw inspiratie geput uit de analogie tussen elektro-

nen en licht. Behalve naar de correlatie in de fluctuaties van de intensiteit kan
je ook kijken naar de distributie van de fluctuaties. De distributie van de fluctu-
aties beschrijft hoe groot de kans is dat je een bepaalde waarde voor de intensiteit
meet. De interferentieprocessen die leiden tot de lange-dracht correlatie geven een
Gaussische distributie van de fluctuaties. De theorie voor de universele geleidings-
fluctuaties voor elektronen voorspelt in de simpelste benadering ook een Gaussische
distributie van de geleidingsfluctuaties, die verandert in een log-normale distribu-
tie als ingewikkeldere interferentieprocessen worden meegenomen. De distributie
van de universele geleidingsfluctuaties voor elektronen is echter tot op heden niet
experimenteel gemeten. De vraag was of in onze metingen van de fluctuaties op
de totale transmissie voor licht misschien een afwijking van de Gaussische distribu-
tie aangetoond kon worden. Dat zou betekenen dat nieuwe interferentieprocessen
een rol spelen die anders zijn dan diegene die leiden tot de lange-dracht correlatie.
Een zorgvuldige analyse van de metingen toont inderdaad een afwijking aan van de
Gaussische distributie. Niet alleen kwalitatieve, maar zelfs quantitatieve overeen-
stemming wordt aangetoond tussen de metingen en berekeningen van de nieuwe
interferentieprocessen. Dat deze nieuwe interferentieprocessen voor het eerst exper-
imenteel aangetoond konden worden geeft aan dat de metingen in hoofdstuk 4 van
zeer hoge kwaliteit waren.

In de appendices worden diagrammatische berekeningen uitgevoerd van de
interferentieprocessen die eerder op een andere manier (in de Langevin aanpak of
op een heuristische wijze) zijn berekend in hoofdstuk 3 en hoofdstuk 5.

In hoofdstuk 6 wordt naar de interferentie gekeken van frequentie verdubbeld
licht in een wanordelijke structuur. De interferentie van frequentie verdubbeld
licht wordt vergeleken met interferentie in het fundamentele licht in een wanorde-
lijke structuur. Frequentie verdubbeling van licht is het proces waarbij een (klein)
gedeelte van het inkomende licht wordt omgezet in licht met een verdubbelde fre-
quentie (de kleur van het licht wordt omgezet van infrarood naar groen). De
omzetting van infrarood naar groen licht is geen lineair proces, de hoeveelheid
gegenereerd groen licht is evenredig met het kwadraat van de hoeveelheid infra-
rood licht. De efficiëntie van dit proces wordt bepaald door de niet-lineaire sus-
ceptibiliteit. Een monster werd gemaakt van witte verfdeeltjes met een grote niet
lineaire susceptibiliteit. Als dit monster wordt beschoten met zeer intense infrarode
laserpulsen, wordt een klein beetje groen licht gegenereerd. Zowel in reflectie als in
transmissie is de korte-dracht correlatiefunctie gemeten in zowel het infrarode als het
groene laserlicht. Het belangrijkste resultaat is een totaal verschillend gedrag van
de korte-dracht correlatiefunctie voor het infrarode en het groene licht in reflectie.


